
THE OFFICIAL GUIDE TO THE TORQUE GAME ENGINE

The

 y
en —_ ——

The Game Programmer's

Guide to Torque

The Game Programmer's

Guide to Torque

Under the Hood of the

Torque Game Engine

A GarageGames Book

Edward F. Maurina lil

A K Peters, Ltd.

Wellesley, Massachusetts

Editorial, Sales, and Customer Service Office

A K Peters, Ltd.

888 Worcester Street, Suite 230

Wellesley, MA 02482

www.akpeters.com

Copyright ©2006 by GarageGames, Inc.

All rights reserved. No part of the material protected by this copyright notice may be

reproduced or utilized in any form, electronic or mechanical, including photocopying,

recording, or by any information storage and retrieval system, without written permis-

sion from the copyright owner.

Set in ITC Slimbach and ITC Eras by A K Peters, Ltd.

Cover image and art in the Advanced Maze Runner prototype by Christophe Canon.

Library of Congress Cataloging-in-Publication Data

Maurina, Edward F.,, III., 1969-

The game programmer’s guide to Torque: under the hood of the Torque Game

Engine / Edward F. Maurina IIL.

p. cm.
“GarageGames book.”

Includes index.

ISBN 1-5688]-284-1 (pbk. : alk. paper)
1. Computer games—Programming. I. Title.

QA76.76.C672M36 2006
794.8'1526—dc22

2005056630

Printed in the United States of America

09 08 07 06 10987654321

This book is dedicated to my wife Teresa, for her encouragement, her advice, and

most of all for her tolerance of the odd hours | kept while locked away in my office

writing this book.

| must give special thanks to Jerry for acting as an idea bouncing-board and for

listening patiently as | discussed chapter ideas over, and over, and....

Of course, | must also thank the many members of the GarageGames community for

their unfailing interest in the guide and their encouragement.

Lastly, | would like to thank the GarageGames staff for making the publication of this

book possible, giving specific thanks to the “draft reviewers”—Josh Williams, Matt

Fairfax, Ben Garney, Matt Langley, and Justin Dujardin.

Contents

Preface... eee eee eee ix

Introduction

Introduction ... 2... 0.0... eee ee eee eee 3

Engine Overview

Torque from 10,000 Feet... 2... 0. ec ee ee eee 13

Torque Tools 2... . ee ee et eee 35

Introduction to TorqueScript........... 0.0.2.0 0 eee ee eee 97

Game Elements

Torque Core Classes... 6... ee eens 143

Basic Game Classes... . 0... .-..0 0.0 ee eee 157

Gameplay Classes 2.0... 00000 eee 201

Mission Objects...00 000 cee ee 263

Game Setup Scripting. 0... 00.02 eee ee eee 347

Gameplay Scripting... 2... te eee 383

Special Effects... 0... ee eee 419

Standard Torque Game Engine GUI Controls 455

Game Interfaces... ee nes 539

Making the Game

Putting it All Together... 2... 2... eee 571

vii

Preface

So, you want to make a game? You may be standing in a bookstore holding

this book in your hands, or you may be reading this online. Whatever the case

may be, some or all of the following thoughts and questions are probably run-

ning through your mind:

¢ I want to make a game, but can I do it on my own or with a small team?
Making a game is great fun, and a very rewarding experience. You can
definitely make a game alone or with a small team as long as you have the
right tools available to you. One of those tools is the Torque Game Engine
(TGE) and the other is Game Programmer’s Guide to Torque (GPGT). Using
TGE and GPGT, you can create any game that your imagination can encom-

pass and that your skills will allow.

¢ TGE sounds good, but will GPGT tell me what I need to know to make
my particular game? TGE is a powerful and flexible game engine that

can be used to make any number of different and unique games. You may
choose to make single-player or multiplayer games. The game can be a

shooter, an adventures, or a role-playing-game, to name just a few. Game

Programmer’s Guide to Torque will teach you the Torque skills you need to

create these game types. (See section 1.1, “About the Torque Game Engine,”
and section 1.2, “What This Guide Contains,” to learn more.)

e Can [get up to speed fast enough to make my game? Like any other
complex and powerful piece of software, Torque can be hard or easy to
learn. Everything depends on your approach to the task and whether you

have the right resources available to you. With Game Programmer’s Guide

to Torque, with the hundreds of samples that come on the accompanying
disk, and with the experience of making the sample game we write while
reading this book, you will be able to ramp up very quickly and to move
on to your goal—namely, making your own game.

Having been down the path you are just now starting upon, I know how hard

it can be to get started and how hard it is to stay motivated in the face of the

many challenges involved with learning to use Torque along with the other

skills you will need to acquire. | decided to write this guide so that others

would not have to struggle to learn Torque.

In closing, this guide is the result of my own need for a better reference

and my desire to help other learn about the powerful and flexible Torque

Game Engine. It is the culmination of my own game-writing and Torque-using

journey. J sincerely hope that it provides you a pleasant beginning to your

own game-making adventures.

Introduction Part |

Chapter 1

Introduction

1.1 About the Torque Game Engine

1.1.1 What Is Torque?

The Torque Game Engine (TGE) is a AAA 3D game engine made available

to the indie games community by GarageGames. It is the product of many

years of dedicated work and interactive design and development by the staff

of Dynamix, a well-known game development company which the founders

of GarageGames previously started. As Dynamix made games, they would

reuse and refine, taking the best parts of their work to the next generation of

the engine. With this engine, they produced games like Earthsiege, Starsiege,

Tribes, and eventually Tribes 2. All in all, it is safe to say that the code in this

engine has its roots in code written as far back as 1995 and perhaps even

earlier.

In summary, the Torque Game Engine is a product with man-centuries

of development done by proven experts who time and time again used this

engine to produce stellar titles. As far as I know, there is no other game engine

like this on the market at any price.

/ 1.1.2 Why Should | Use Torque?

Educational: One of the best ways to learn programming is to read code written
by other developers. If you are going to read code, you might as well have fun and

read game code and learn a few tricks in the process.

Resume Building: Mod (modify] the engine to show off your skills to future
employers.

MOD Makers: How many times have you gotten stuck trying to mod other engines

because they did not support feature X? Now you have the source and can easily

add any features you want and truly differentiate your mod from the rest.

To Make Great Games! That's what we all live for, so do it. This is an unprecedented

opportunity to build your game using an industry-proven game engine that rocks!

—GarageGames Site

One of the beauties of the Torque Game Engine is that you don’t have to use

it to make games. “What’s that, you say?” I repeat, you do not have to use

the Torque Game Engine to make games. With the features included in this

engine, you can just as easily make a variety of professional, educational, or

“your category here” products.

Part | Introduction

Of course, you must abide by the end user license agreement (EULA), but

once you have licensed the engine, the terms of the agreement are pretty free

about what you can create. The only real limitation is your own imagination.

1.1.3 Not Just First-Person Shooters

Some people, examining the Torque Game Engine for the first time, may be

under the impression that it is only for making first-person shooters (FPS).

Nothing could be further from the truth. Yes, it is well suited to the FPS genre,

but it can and has been used to make a variety of different game types.

Current Titles

 Think Tanks

Lore

Orbz

RocketB owl Plus

Introduction

 dRacer

Chapter |

Part | Introduction

 Meh

Minions Of Mirth

1.2 What This Guide Contains

By the end of this book, you will understand how to use Torque, and we

will even make our own little game in the process. This book aims to fill the

following needs.

e Learning guide. The guide is designed to quickly walk you through the

concepts and learning required to get started on your own games. To that
end, it comes with a lesson kit containing complete sets of ready-to-run

sample scripts (from discussions) and sample lessons covering all topics
discussed.

¢ Reference guide. To make this guide useful even after your preliminary

learning experience is complete, the guide is formatted in a way that facili-

tates looking up specific topics. Also, it comes with quick-reference guides

covering all TGE console classes, scripting, script functions and methods,
GUI (graphical user interface) controls, etc.

¢ Prototyping help. This guide and the accompanying lesson kit in combi-

nation with the resources that come with TGE itself should provide all the

materials you will need to create your own game prototypes.

¢ Teaching aid. The guide and associated kit have also been designed with
the classroom in mind. The contents are suitable to support game-design
courses. A specialized kit is included containing many ready-made les-

sons/samplers in the following categories: scripts, GUI controls, interfaces,

HUDs (heads-up displays), and all of the major 3D/engine topics discussed
in the guides. All lessons can be extended, and new lessons can be added
with relatively little effort.

1.2.1 Summary

This book is intended as a starting point for the completely new user, but it is

also suitable for the user who is moderately experienced with Torque already.

Introduction

It has the following chapters:

Part I: Introduction

Chapter 1: Introduction

Part II: Engine Overview

Chapter 2: Torque From 10,000 Feet. This chapter gives the ten-minute

description of Torque and introduces the new user to important con-

cepts and terminology.

Chapter 3: Torque Tools. Here, we discuss all of the built-in tools and

establish an understanding of how to use the TGE kit in editing mode.

Chapter 4: Introduction to TorqueScript. Here, we introduce the em-

bedded scripting language that comes with TGE. This chapter covers
the complete syntax and the major concepts required to work with this

scripting language.

Part ITI: Game Elements

Chapter 5: Torque Core Classes. This chapter examines the core script-

ed classes and their importance in the hierarchy, structure, and behavior
of the engine.

Chapter 6: Basic Game Classes. Here we cover the basic classes used to

represent shapes, images, and interiors.

Chapter 7: Gameplay Classes. This chapter reviews the classes through
which we implement game interactions that define the gameplay. We

also introduce important game-design concepts like the inventory.

Chapter 8: Mission Objects. TGE provides a myriad of object classes. In
this chapter, we discuss all of the mission/game/level placeable objects

that have not yet been discussed, excluding special effects.

Chapter 9: Game-Setup Scripting. Here we work through in-depth dis-

cussions of critical scripting classes and features that are associated with
setting up and maintaining a game.

Chapter 10: Gameplay Scripting. Jn this last scripting chapter, we ex-

amine a variety of scripting functions, examining how they work and

providing the context in which they contribute to gameplay.

Chapter 11: Special Effects. This chapter splits out several classes used

for audio and visual special effects.

Chapter 12: Standard TGE GUI Controls. In this chapter, we discuss the
32 most important GUI controls.

Chapter 13: Game Interfaces. This follow-on chapter builds on the last

chapter and walks through the creation of two sets of themed game in-
terfaces. Each set includes a splash screen, a main menu, and a credits

screen. We also specify and design three types of HUD to show that

complex HUDs can readily be created from basic TGE controls.

Chapter |

Part | Introduction

¢ Part IV: Making The Game

* Chapter 14:-Putting It All Together. Here, we build a complete single-
player game prototype. We plan the game; accumulate many of the exam-

ple scripts, shapes, interiors, and interfaces created in the prior chapters;

and glue them all together with a small set of gameplay-specific scripts.

e Appendices. In order to facilitate the learning process and to fill the role

of reference, an extensive set of appendices is included in electronic form.

These appendices include complete references of game class fields and

methods, console functions, callbacks, and GUI controls, to name a few.

1.3 What This Guide Does Not Contain

This guide obviously does not contain the answer to every question that every

person who uses Torque can come up with. My hope is that it contains enough

information and is accessible enough that you can learn how to answer these

unanswered questions on your own. However, sometimes that just isn’t going

to happen, so a “Getting Help” appendix has been included to assist you.

First, though, let’s determine what you should know before starting.

1.4 What You Should Know Before

Reading This Guide

Ah, the fateful question, “What do you, the reader, need to know?” First,

understand that this guide is here to help you, but you are going to have to do

some real work to learn what it has to tell you.

TANSTAAEFL: There ain't no such thing as a free lunch. —Robert Heinlein

Second, since this guide is aimed at a broad audience, I have created a

pseudo-matrix below listing topics you should at least be passingly familiar

with based on your role in your team.

Who Are You? Some Stuff You Ought To Know

I’m like, the artist, dude. ¢ Basic modeling and animation concepts: convex vs.

concave, skeletal animations, texture (IFL) animations,
blended animations.

e At least one modeling tool in this list: MilkShape 3D

(MS3D), 3ds Max, Maya, or gameSpace/trueSpace.
(Yes, there are other options; see appendix.)

e If the only tool (in the prior list) you know is MS3D, then

be sure to add QuArK, Cartography Shop, or Hammer to

your list.

e More? Sorry, this isn’t an art guide. In fact, you probably
know more about art than I do!

7; pen ey GSH cote: > ~ ~ by ce ri Se ie dl ae .
= 5 wn ‘ey

* = 5 8, ‘
se e ee * a Ps a Seen Peete Mee eden ee as oe <on SE Been SE i Fl Y - : : z a

= =a te" eA Se hee ot > gle eee Ppa: Re Teh, & & . I ee s es » aL eee oh ARENDS Le ag ML EAA EB eT RTE Roe ates MELE MT Ree ee eee: 5

Introduction

ink eer aes

I’m the programmer, man.
You got any Dewsky?

e C/C++

e Scripting in Perl, TCL, or perhaps another game-engine
scripting language.

e Math. If you flinch when I say algebra, geometry,
trigonometry, vectors, matrices, or Cauchy-Schwartz
inequality (OK, you can flinch on that last one),
MathWorld (http://mathworld.wolfram.com/) is your

friend.

If you are familiar with client-server architectures and

simulation concepts, you will have a great head start.

I am the game designer.
Enter my world...

The limitations of your target system(s) as well as

the limit on the speed of light. Sure, your team
can probably make a 4096-player RFMMOTTTG (really
freakin’ massively multiplayer online tick-tack-toe game),
but you probably don’t want to. I’m only partly joking

here. If this is your first game and you are the idea guy
or gal, keep it realistic. There is real work in making a
game.

The limits of the tools your team’s programmers, artists,
and other folks use to implement your ideas.

‘Me da boss. e What the...? Why are you reading this... er, I mean

you should know of course, Sir/Madam/Other, every
member on your team will need two copies of this

guide. One for work and one for home. We can’t have
people getting hernias carrying these back and forth.

Jack of all trades (JOAT),

AKA Ione wolf. This guide is specifically written for you (and for small
teams). You will need to know everything on the list
above (excluding da boss). Also, be sure to look at the
reference appendix and get your hands on some of
those books and resources. You’ve got a real challenge ahead of you, but you can do it!

1.5 How To Obtain Torque (Licensing Torque]

OK, so you’re sold. You’ve bought this book (please tell me you’re not standing

in the bookstore still deciding...).

Whatever the case, you have decided that this Torque thing sounds like

a good deal. To get your hands on this state-of-the-art engine, simply do the

following:

1. Visit the GarageGames website: http://www.garagegames.com/.

Chapter |

2. Follow the links to the products page.

3. Add Torque to your cart.

4. Click the “Buy Now” button and follow the instructions.

Part |

10

Introduction

1.6 Getting Started, One Step at a Time...

On first picking up the Torque Game Engine, you may be somewhat

overwhelmed. If asked, most GarageGames members will probably admit that

they were, too, and so was I. The fact is, this engine and all the associated

files are massive. Just doing a quick count on the current version of the code

brings up the following metrics (counts may vary):

e 2329 source files containing 593,930 lines (~325k lines of code and ~167k

lines of comments),

© 322 script files containing 49,856 lines of script (~37k lines of of script, and

- w7k lines of comments), and

e this guide comes with a kit that adds another 187 script files containing
19,566 lines of script (~ 11k lines of script, and ~5k lines of comments).

No matter how you twist it, turn it, chop it, or sort it, Torque is big. Big not only

in raw size but in features. However, approached with an inquisitive mind,

and with the understanding that nothing is free, especially an understanding

of the ins and outs of this engine, you can master Torque.

1.7 The GarageGames Community and Resources

I’ve stated this in more than one forum, and I must state it here: the

GarageGames community is excellent. I continue to be impressed on a daily

basis by how well attended the forums are and how quickly people give

answers to questions. The GarageGames site provides several resources.

e Forums. These are areas where you can post questions, ideas, general

complaints, etc. To date, there have been tens of thousands of posts. At last

count (not including forums dedicated to released games), there were 12
major forum categories containing 64 subcategories.

e¢ Resources. These are community submitted items including scripts, code,

web links, books that are good to read, accumulated references, and more.

These resources are organized by date and rating (among other catego-

ries).

e News. The GarageGames site has a news page and a newsletter. Very cool.

1.8 Conventions

Throughout the guide, I will attempt to align my naming conventions and

terminology with those you will encounter in the official Torque SDK (software

development kit) documents and elsewhere on the GarageGames site. In the

cases where this is not possible, | will make it clear that the names/terms in

use are of my own invention.

Introduction

1.8.1 Icons Legend: Warnings, Notes,
and Expert Tips

Throughout this guide, you will be presented with side notes of various forms.

Some of these will be warnings of odd or misleading behavior, others will be

notes on interesting bits or facts, and some will be expert tips for those who

want to explore the edges of Torque’s behaviors. You will be able to recognize

these side notes by looking for the following icons.

© ©
Warning Note Expert Tip

1.8.2 Game-Building Lessons

Throughout the guide, you will find sections marked as one of the following:

1. Maze Runner Lesson #123 (90 Percent Step). If you intend to make the

game at the end of the guide, you must complete these lessons. They con-

struct game elements without which the game will not function.

2. Maze Runner Lesson #123 (10 Percent Step). These lessons are consid-

ered optional when making the initial version of the game. If you should

choose to skip them, the game will still be playable but may be a bit rough

around the edges.

These lessons will be largely independent of each other, but if a lesson depends

on another lesson, the numeric ID of the lesson, as well as the chapter it is

in, will be referenced.

Combined Lessons Appendix

For those who want the entire lesson set in one place, all of the lessons from

the printed chapters, up to but not including Chapter 14, are included in the

“Combined Lessons” electronic appendix.

Skip Ahead!
To learn about the motivation for the above lesson titles, and to learn what

the game will be, please skip ahead to Chapter 14. There, you should read

Section 14.1, “Maze Runner: A Simple Single-Player Game,” which includes

the following.

Chapter |

11

Part |

12

Introduction

¢ Game Elements. Here, we will briefly discuss the concept of a game

element.

® Game Goals, Rules, and Mechanics. Next, we will explore the motivation

for planning a game’s goals, rules, and mechanics before we write the

game. Then, we will do this planning for our game.

¢ Setting up our workspace. Before we can start working on the lessons,

we need to set up a workspace. In this section, [will instruct you on what

steps are required to prepare for the lessons.

e 90 Percent or 10 Percent? Lastly, I will give you an overview of the 90

percent versus the 10 percent steps and why these ideas matter.

So, skip ahead; it’s OK. When you’re done, you can come back and start

learning about Torque!

Part Il

Chapter 2

Torque from 10,000 Feet

The Torque Game Engine (TGE) has a long legacy. In its various incarnations,

it has been used to make both non-networked single-player games and

networked multiplayer games. Today, TGE has the following features.

Single-player and multiplayer ready. TGE is based on a standard client-

server architecture and is fully scalable to 128 players and beyond.

Raster-based graphics. TGE is not shader based but has the capability to
incorporate any features you desire (you have the source code). Further-

more, it is the predecessor to the Torque Shader Engine (TSE), and thus

most things learned using TGE will apply to TSE.

Event-driven simulation. TGE is designed around an event-driven simu-

lator. It utilizes separate client and server event loops. Additionally, most

game logic and GUI logic is driven by an event system.

Memory and network bandwidth efficient. TGE is designed to have a

reduced memory footprint and an accompanying low-bandwidth require-

ment per connection. It utilizes static datablocks for common information

and network compression plus transmission-reduction algorithms.

Broad functionality. Because of its long heritage, TGE comes ready with

most of the methods and functions required for standard game calcula-
tions, actions, and responses.

Fully integrated. TGE incorporates all the code required to render/play/

capture all game elements, including GUIs, sound, 3D graphics, and other
I/O (input/output). It also includes a large and expanding set of content

creation and debugging tools out of the box.

2.1 TGE Terms and Concepts

When you first start working with TGE, you will come across terms like inte-

rior, shape, datablock, portal, IFL, image, etc. Some of these words have TGE

specific meanings, others are industry-standard terms, and a small set are

hybrid terms with meanings in both worlds. Either way, if you are not very

experienced, just trying to figure out what these terms are may be a big chal-

lenge. To help ease this transition, we will run through some of the more con-

fusing terms and concepts you will encounter while working with TGE. For a

more extensive list of terms, see the “Glossary Of Terms” appendix.

15

Part I

16

Engine Overview

2.1.1 Shapes and DTSs (TGE Term)

A shape, also known as a DTS object, is a model created using a polygon (or

equivalent) editor. Such models may have

e skeletal animations (see Section 2.1.8, “Animations: Blended vs. Non-

Blended"),

e multiple skins (textures),

e animated skins,

e visibility animations,

* multiple levels of detail (see Section 2.1.5, "Level of Detail"),

e translucent and/or transparent components,

¢ multiple collision boxes (see Section 2.1.6, "Collision Detection”),

e and much more.

This is the first of two model categories used by TGE. DTS, which stands for

the Dynamix Threespace Shape, is both the shorthand notation for this con-

cept and the file extension (e.g., player.dts). Shapes are generally used to rep-

resent nonstructural entities such as players, power-ups, trees, and vehicles.

Shapes can be created with 3ds Max, MilkShape, or Caligari’s gameSpace/

trueSpace, to name just a few possible content-creation tools. See the Garage-

Games website to learn how this is done and to find the proper exporter for

your content toal(s).

Non-DTS Renderers?

Some users have complained that they would rather use an alternate format

instead of being “forced” to use the DTS format. This is entirely possible.

Users have already produced alternate mesh renderers to include such formats

as 3DS and MS3D. If you have a favorite format and are familiar with how it

works, you can simply pick up one of the previously mentioned mesh render-

ers and modify it for your own format.

Shapes in Our Game

In the prototype for our game, we will need just a few shapes: a player, coins,

maze blocks, and fireballs.

e An avatar or player. The lesson kit comes with Joe Maruschak’s “Blue
Guy” (Figure 2.1, left), but we will not be using him beyond a quick intro-

duction. Why? In order to demonstrate the minimum set of animations that

need to be included to make the shape work with the Player class, we will
make the “Simplest Player” (Figure 2.1, right), a simple geometric shape.

¢ Pick-ups, maze blocks, and fireball blocks. In our game, we will also
require shapes to represent coins that we can pick up. Also, we will need

Torque from 10,000 Feet Chapter 2

 Blue Guy Simplest player

Figure 2.1.

Simple Player shapes.

Coins Maze blocks Fireball blocks

a variety of blocks and obstacles (fireball blocks) to build our mazes from

(see Figure 2.2).

2.1.2 Interiors and DIFs (TGE Term)

Interiors are models created using convex (see Section 2.1.3, “Convex vs.

Concave”) brushes.

The InteriorInstance class, frequently referred to simply as Interior(s), is

used to display models that represent any structural object, to include such

things as buildings, bridges, walls, and other large structures. The motivation

for this name comes from the fact that these objects can have an actual inside,

i.e., interior.

This modeling technique is used to solve a few technical issues associ-

ated with creating large and geometrically complex models that are intended

to be entered by other models (or the camera). Some of the biggest technical

problems solved by this technique are the following.

* Efficient collision detection. Binary space partitioning (BSP) trees are gen-
erated and used for detecting collisions against Interior objects. BSP trees

provide a very efficient way of determining object collision, one of the most

CPU-intensive processes a real-time application performs.

Figure 2.2.

Required shapes and

blocks.

17

Part II Engine Overview |

¢ Visibility culling. This technique also provides numerous shortcuts for

culling of visibility through the use of portals (see Section 2.1.7, “Portals”)

so that rooms and terrain that the player can’t see don’t get sent to the
graphics card for rendering. This is a lot harder to do, from a mathematical
standpoint, than a nonprogrammer might imagine.

e Efficient lighting. Finally, this technique “regularizes” (to abuse the Eng-

lish language a bit) the process of calculating lighting and shading as
affected by the presence of the model in the game world.

DIF, which stands for Dynamix Interior Format, is both a shorthand notation

for the same concept and the extension for these files (e.g., myBuilding.dif).

Interiors can be created with QuArK, Worldcraft/Hammer, 3ds Max,

MilkShape (not advised), or Caligari’s gameSpace/trueSpace. See the Garage-

Games website to learn how this is done and to find the proper exporter for

your content tool(s).

2.1.3 Convex vs. Concave (Industry Terms)

In TGE, all collision meshes must be convex, not concave. The trouble is,

many people either do not know what these terms are or cannot remember

how to identify a convex or concave mesh.

Finding the parts of a mesh that are concave (making it a bad collision

mesh) can be frustrating at best. Therefore, you can follow this simple rule

when making collision meshes:

If any line segment on the mesh, when extended infinitely in both directions,

passes through the interior of your mesh, the collision mesh is concave and

therefore bad.

Or the shorter version:

Line segment passes through interior of collision mesh ... bad (Figure 2.3).

Figure 2.3.

Using line segments to

discover concavity.

18

Line segment passes through—concave Problem solved—convex

Torque from 10,000 Feet Chapter 2

Has dimple—concave Problem solved—convex

Alternatively, you can examine your mesh and look for dimples, that is,

regions where the surface curves inward. (Figure 2.4)

2.1.4 Convex Brush (Industry Term)

A convex brush is a single instance of some regular convex geometry. Convex

brushes are combined to create models that can then be converted into an

interior. In TGE, any one interior may be composed of many hundreds or even

thousands of convex brushes.

2.1.5 Level of Detail (Industry Term)

Often referred to as simply LOD, level of detail pertains to the complexity of

a 3D model relative to the current viewing distance to that model. This com-

plexity increases or decreases as the camera (the viewer) moves nearer to or

farther from a shape, respectively.

In TGE, both Shapes and Interiors support the ability to automatically

substitute new models for a Shape or Interior as the distance from the Shape/

Interior changes. These substituted models should have fewer polygons as

the distance increases. This has the effect of reducing the rendering load for

distant objects, increasing overall frame rates. Properly done, this allows for

the creation of complex and densely populated indoor, outdoor, and mixed

scenes.

2.1.6 Collision Detection, or COLDET (Industry Term)

Collision detection (COLDET) can loosely be described as the process of

detecting when two or more objects (in the simulated world) come into con-

tact with each other. COLDET is a feature that enables interactivity in the

game world. TGE (1.4+) supports a number of unlimited collision detection

bounding shapes for polygon models. This means that the level of COLDET

Figure 2.4.

Using dimples to find
concavity.

19

Part Il

Figure 2.5.

Interior with portals.

20

Engine Overview

interaction is completely under your control. Additionally, TGE provides auto-

mated generation of COLDET structures for some Shapes and for Interiors,

thus reducing your responsibility while not reducing flexibility.

Collisions in Our Game

Like many games, our game relies on collisions for parts of the interactive

experience. In particular, we will want our player to be “killed” if he is struck

by a fireball. We will want the player to be able to pick up coins and grenades,

which are part of the game’s objective.

2.1.7 Portals (Industry Term)

As was noted above when we discussed Interiors, TGE supports portalized

rendering of interior models. That is, Interiors support the insertion of portals.

These portals will divide an interior into sectors.

In Figure 2.5, we have a single interior with four rooms, numbered 0

through 3. There are three doors in this interior. The thin lines in the picture

are portals situated within the doors that connect each room.

In Room 0, there is an observer A, and in Room 2 there is an observer B.

Observer A is facing the door between Rooms 0 and 1. Because a ray cast

from Observer A’s position can penetrate both the portal between Rooms 0

and 1 as well as the portal between 1 and 3, all three rooms (0, 1, and 3) must

be rendered for Observer A, but Room 2 does not need to be rendered.

Observer B is facing the door between Rooms 2 and 3. Because a raycast

from Observer B’s position can only penetrate the portal between rooms 2 and

3, only these two rooms (2 and 3) need to be rendered for observer B. The

other two rooms (0 and 1) do not need to be rendered.

In both of the above cases, if no portals were used, or if the feature were

not available, for both Observer A and Observer B, all four rooms would need

to be rendered.

2.1.8 Animations: Blended vs. Non-Blended

(Industry Terms)

In TGE, meshes (models) are animated using skeletal animation. The engine

supports two styles of skeletal animation: absolute (non-blended) and blended.

In simplest terms, absolute animations override all prior animations of all

joints that the absolute animation affects. For example, we have an animated

arrow. This arrow has a base position, a non-blended animation to the left,

and a blended animation to the right. Assume that the left and right anima-

tions are equal and opposite each other.

Torque from 10,000 Feet

If we play the sequences in Table 2.1, we get the listed results.

Chapter 2

Sequence(s) : Result hi ae sot

Non-blended Arrow leans left.

Blended Arrow leans right.

Blended followed by non-blended Arrow leans left.

Non-blended followed by blended Arrow back in base position (straight up).

Non-blended followed by non-blended Arrow leans left, just as if it were non-blended

only once.

Blended followed by blended Arrow leans twice as far right as single blended.

In Chapter 7, “Gameplay Classes,” we will build some real animations, but

if you wish to learn more, I suggest perusing some of the online animation

docs at GarageGames and/or purchasing BraveTree: Girl Pack (see “Favorite

Resources” appendix for details on where to find these).

2.1.9 Image File Lists, or IFLs (TGE Term)

Another kind of animation supported by TGE is texture animation. The prem-

ise of this animation style is that the engine will swap the current texture for

another at fixed time intervals, thereby animating the texture in question.

This animation is accomplished by specifying texture names in a special

way, identifying the texture as an IFL-driven texture (in the model definition).

Then, a text file is supplied (by the modeler), specifying the names of the tex-

tures to use and the number of frames to play each texture. Beyond this, the

animation sequence is played like any other animation.

2.1.10 Callbacks (Industry Term)

For the purpose of this guide, a callback is any console method (scripted func-

tion associated with an object in the game world) that is automatically (or

directly) called by the engine (or scripts) in response to some event. These

callbacks are part of what drives a game.

Callbacks in Our Game

Although we do not strictly focus on callbacks in this guide, several of them

will be required to complete our game. Therefore, at the appropriate time, we

will take a little time out to discuss and clarify those callbacks that are in fact

needed: onCollision(), onPickup(), and others.

Table 2.1.

Blended and non-blended

animations.

21

Part It

22

Engine Overview

2.1.11 2D and 3D Sound (Industry Term]

In the GarageGames forums, online documentation, and in this guide, you

will see references to sound as being either two-dimensional (2D), or three-

dimensional (3D). Although odd sounding (no pun intended), these concepts

are quite simple.

A 2D sound is a sound that has no apparent origin, and when played, will play

equally loud from the left and the nght speaker (assuming you have only two).

A 3D sound has (at a minimum) an origin associated with it and is thus

transformed and attenuated based on the listener’s location relative to the

sound’s source. That is, 3D sound may play more loudly from one speaker

than the other(s).

Please note that 3D sounds can have several other factors associated with

them, and that this code exists in the engine. However, all other specialized

3D sound effects are not (by default) compiled into the engine.

Sounds in Our Game

Our game would not be complete without sounds, both for the interfaces and

for the game itself. So, we will take time out in later chapters to walk through

the setup of the following sounds:

e Splash-screen music (2D non-networked). This sound plays when the

splash screen is displayed.

e Button-over and button-press feedback (2D non-networked). These

sounds play to indicate that the mouse has moved over a button, or that a
button has been pressed.

e In-game music (2D non-networked). We will learn to play music client side.

¢ Fireball warning (3D networked). This sound will be played when a fire-

ball is about to shoot and will give warning in advance of the action. It is

the only networked and the only 3D sound we will work on.

2.1.12 Missions (TGE Term}
In the gaming world, there are many words used to described similar things.

One of those things is a game level. In Torque, a game may have one level or

many. These levels are called missions.

Another way to come to grips with the mission concept is to understand

what goes into a mission file. Mission files (stored under the data directory)

have the extension .mis. If you were to open one of these files, you would

see that it contains a script that is creating and placing content. So in effect,

a mission can be thought of as a collection of content that is loaded by the

Torque from 10,000 Feet

engine upon request. In fact, in most games, the mission is the primary means

of loading the initial content such as the terrain, sky, sun, etc. Subsequently,

game setup and gameplay scripts may be used to add and remove content, but

we get our start by loading a mission.

Do I Have to Use Missions?

Well, you don’t actually have to use this construct, but it is the best way to get

the base portions of a level/game/etc. loaded. So, if you are expert enough,

you can dynamically build the entire level/game/etc., but I do not suggest it.

How Big Can a Mission Be?

It is worth noting that a Torque mission can be extremely large. In fact, I

know that one of the GarageGames employees (Matt Fairfax), as part of some

research he was doing, loaded all of the interiors from every level in Quake IT™

simultaneously into a single Torque mission. He mentioned that there was no

noticeable dip in frame-rate nor did the engine lag at all. This was in fact a

small test of the true power and capabilities of the engine.

Missions in Our Game

Our game will utilize a single mission. It will load a terrain, the sky, a sun

(lighting definition), celestial bodies, and various other atmospheric effects.

Subsequent to the initial load, we will be using scripts to dynamically

load and unload content from our mission. That is, we will stay in the same

mission but use scripts to build and rebuild levels of the game, without ever

reloading the mission.

2.1.13 Event-Driven Simulator (Industry Term)

TGE, like all other game engines, is a simulator. If you are at all familiar with

the concept of simulation, you will know that there are different types of

simulators.

TGE is an event-driven simulator. In other words, all engine actions are

caused by some kind of event. There are a variety of events that TGE is aware

of and which we will discuss as we continue through this book. These events

are enqueued into one of three queues (depending on the event type) and

then processed by the engine in the order in which they occurred.

At this point, the important thing to understand is that events drive the

game world and thus all of your game scripting, and coding should be designed

with that in mind.

Chapter 2

23

Part Il

24

Engine Overview

2.1.14 Ticks (TGE Term)
In TGE, time is measured in terms of wall-clock time, that is, multiples of

milliseconds (ms). Additionally, TGE measures in simulation time. Simulation

time is called tick time or simply ticks.

Because TGE is effectively an event-driven simulator, it cannot always

guarantee that events will occur on specific wall-clock time boundaries. Tick

time provides a new measure of time that is under the contro! of the engine

itself, allowing it to guarantee that all objects will get their allocated number

of ticks and that they will be ticked in the proper order. The elegance of this

solution trivializes the significance of this problem. Just understand, without

a solution to the guarantee problem, it is for all practical purposes impossible

to simulate a multiplayer interactive world, not to mention the problem of

handling the additional burden introduced by a networked environment.

Generally speaking, a standard TGE tick is equal to 32 ms, by default.

. Events occurring on tick boundaries will normally experience an actual tick

+ time of 32 ms, plus or minus 1 to 3 ms.

Be aware that the granularity of a tick can be changed to suit your own

game (or other} needs; i.e., tick times of 2 ms, 16 ms, 64 ms, or even 128 ms

(are all legal tick times.

2.1.15 Client-Server Architecture (Industry Term)

It is important to understand the architecture used by a game engine as it

affects the decisions you, the game designer/programmer/scripter, will make.

In the context of a game engine, the term architecture can be loosely trans-

lated as, “the organization of the game systems.” In other words, “What parts

of the engine do what tasks?”

TGE implements a client-server architecture. When we talk about a cli-

ent-server architecture, we’re talking about an organization wherein one part

of the engine acts as a sort of controller (the server) and the other part of the

engine acts as a controllee (the client).

While executing, the client and the server may either co-exist in the same

executable, execute separately on the same machine, or execute separately on

separate machines connected over a network.

For a standard client-server architecture, there will always be one server

while there may be many clients. The server is aware of all clients, and the

clients may or may not be aware of each other.

The client-server architecture is suitable for both single-player and multi-

player games. We will discuss variations on executable “modes” and “inter-

connects” momentarily.

Torque from 10,000 Feet

Why Use a Client-Server Architecture?

This architecture has become common in the game industry for a few reasons.

e First, because it provides a meaningful and understandable way of dividing
labor and resources.

e Second, because (as stated previously) it is suitable for both single-player

games and multiplayer games. This means that a game can be designed for

both single play and multiplay without herculean effort.

e Third, because, in the case of multiplayer games, this architecture scales

well for N players, where N can be up to 128 or higher.

This architecture does have some drawbacks when writing a single-player

game such as unneeded duplication of objects (see Section 2.1.17), and some

added control complexity. However, the multiplayer benefits far outweigh

these considerations. Also, it cannot be stated too often, having the ability to

take a single-player game to the multiplayer arena with few or no changes is

well worth the added complexity.

The TGE Client-Server Modes and Connection Schemes

Torque implements the client-server model using a single executable. That is,

whenever the engine is run, it contains both a server and a client. In order

to implement different game types, the server or the client can effectively be

disabled. In essence, the engine can be run in one of the four modes shown

in Figure 2.6.

Chapter 2

Server Ate
Client

Single-Player Listen Server

(Industry Term) (Industry Term)

: Local |
Client Serve Client

Bla fea thY(3
Dedicated Server
(Industry Term)

Remote Client
(Industry Term)

Figure 2.6.

Modes for running Torque

25

Part Il Engine Overview

The observant reader will point out, “The single-player and listen-server

modes look quite similar.” You are in fact correct.

In fact, in the single-player image, the implication is that there is a server,

but it has not yet been activated. This activation will not occur until a con-

nection is requested by the client. Also note, in single-player mode, the server

will not accept external connection requests. The listen server, on the other

hand, does have an active server, and it will accept both internal and external

connection requests.

Given these four modes, a game can be interconnected using one of three

connection schemes. The connection scheme we select is based on the game

type we wish to run.

The simplest game type is the single-player game (Figure 2.7a). This is

accomplished by running a single instance of the executable on one machine.

In this case, the server and client connect via an internal (local) connection.

When this connection is requested, the server becomes active.

The second game type involves a single executable with an active client

and an active server running on one machine as a listen server (Figure 2.7b)

One player (the hosting player) uses the local client and a local connec-

tion. The remaining players use client-only executables, running on separate

machines, and connect remotely to the listen server. This mode is appropriate

for LAN (local-area network) parties and other cases where a user wants to

host a game while participating.

The last game type involves a single executable running as a dedicated

server (only the server is active; Figure 2.7c}). Multiple client-only executables,

running on separate machines, can then connect with this executable, again

allowing for multiplayer games. Although this could be used for a LAN party,

it is more suited to a professional hosting setup, where your company hosts

one or more sessions on a machine used only as a server.

Figure 2.7.

Client-server

interconnection diagrams.

26

bee

a. Single-Player b. Multiplayer Listen Server c. Multiplayer Dedicated

Torque from 10,000 Feet

Master Servers (Industry Term]

In the two above multiplayer connection schemes, the remote connections

may be on a LAN or across the Internet. In the latter instance, another server

is required, namely a master server. It is the job of this specialized server to

assist clients in locating game servers.

TGE Client-Server Division of Labor

As was noted above, using a client-server architecture allows one to divide

both labor and the location of resources (assets). Table 2.2 shows a summa-

rized listing of the labor division between the TGE client and server.

Sound 2D sounds 3D sounds

Input Capture and pre-process Post-process and determine response

GUI rendering All processing and rendering | None

Game rendering | All None

Animations Non-authoritative prediction Authoritative calculations and
interactions

Collision Non-authoritative prediction Authoritative calculations and
detection responses

Game content e Interfaces e Players, vehicles, weapons, etc.

e Ownership of content. © (Optional) validation of all content

Game decisions Limited to things that do All decisions regarding object
and calculations | not affect gameplay, such creation, deletion, movement,

as particle effect calculations | damage, etc.
In short, the client is responsible for all tasks except those that affect gameplay

or those that require spatial calculations in the game world.

Client-Server Communications

This book focuses on making a single-player game and thus does not discuss

networking in any great detail. However, it is important to avoid forming bad

habits. One of these bad habits is direct manipulation of server data/routines

from the client and vice versa. Thus, in Chapter 10 we will talk briefly about

how to execute server functions from the client and how to execute client

functions from the server.

Chapter 2

Table 2.2.

Division of labor between

TGE client and server.

27

Part lI

Figure 2.8.

Ghosts on the client.

Figure 2.9.

Control objects.

28

Engine Overview

2.1.16 Objects (Industry Term}

Throughout this guide, you will see the term object being used to refer all

kinds of things, including GUI controls, shapes, interiors, and various script-

ing elements. This may be confusing, but in Torque, all classes used to imple-

ment the game are in fact engine objects. Some objects are accessible via the

console, and therefore scripts. Some are only accessible internally (by writing

C++). In this book, we are only interested in the former.

2.1.17 Ghosts, Control Objects, and Scoping
(TGE Terms)

When we are playing a singleplayer or a multiplayer game, all objects are cre-

ated on the server and then some of these objects are duplicated on the client.

These duplicates are called ghosts (Figure 2.8).

The duplication of objects as ghosts on the client(s) is controlled by scop-

ing. Each client that attaches to a server must define a single control object.

Generally, this control object

is some type of avatar (biped,

vehicle, or other), but it may

also be a camera. Regardless,

this control object is respon-

sible for scoping (Figure 2.9).

Scoping, in TGE terms, is

the act of determining which

objects in the game world are

visible, audible, and otherwise

CONTROL OBJECT required to be present for the

current control object to cor-

rectly interact with the game

world. These objects will be

ghosted to the client for that

control object and _ subse-

quently maintained.

This description trivializes

the act of scoping to some

degree, but it does describe

the essence of what it means

and what it does. I will repeat it, but for now be aware that your game must

have a control object, otherwise it will be unable to render the game world.

E
a

ee

Torque from 10,000 Feet

2.1.18 Datablock (TGE Term]

In addition to normal] objects, there is a special category of objects called data-

blocks. Datablocks are special for the following reasons.

e Al] datablocks are duplicated from the server to each client.

e A datablock XYZ on the server with ID 123 is guaranteed to have the same

name XYZ and ID 123 on all clients.

e¢ Datablocks are transmitted to clients at the beginning of a game and not
updated after that, making them in effect static.

¢ Datablocks have special scripting properties, which we will discuss later.

e Because the content of a datablock is controlled by the server and not the

client, they are an efficient means of preventing cheating (clients modifying
their own game abilities and statistics).

You may ask, “Why do I really need these datablocks?” and that is a valid

question. In answer, please consider the following theoretical example.

In game ABC, a multiplayer game, players are allowed to “create” a vari-

ety of wheeled vehicles. Each of these vehicles has between four and eight

tires, skins, special effects (sounds, dust emitters, etc.), and a rather lengthy

list of physical attributes. The complete structure describing these vehicles

has a memory size of approximately 2048 bytes (2 KB).

At any time during the game, in which there are up to 32 participants, a

player (client) may create a new vehicle. With a client-server architecture, this

would require that the server create the object and then ghost all of its data to

the player. It is easy to see that in the worst case, where all of the players are

within visible range of the other players, the server might have to simultane-

ously ghost 32 x 2048 bytes of data to each of the 32 chents to inform them

of the update. This translates to an update of 2 MB of data that would be

required nearly instantly. In addition to all of the move update information

and other ghost updates that would be happening, it can be seen that this

game would quickly lag out (halt due to lack of bandwidth).

Now, let us reexamine this example, introducing datablocks. The data-

block will predefine all of the vehicle data. This datablock is transmitted once

and only once (at the beginning of the game), still accruing the 2 MB penalty.

However, to dynamically create a new vehicle, we only need to send a small

packet of data, including the ID of the datablock, an initial creation posi-

tion, and some other miscellaneous data. An estimated size for this packet

is roughly 64 bytes. Now, our total simultaneous bandwidth requirement is:

32 x 32 x 64 bytes = 64 KB. This is a much more reasonable number and

would be easily handled even on a system using a modem.

Chapter 2

29

Part |!

Table 2.3.

FPS Starter Kit directories.

The organization of

these directories is by

no means fixed or in

any way magical. As

| mentioned earlier,

when you become

more experienced,

you may begin to

modify this structure

significantly, perhaps

doing away with the

“common” directory, or

incorporating features

from other directories

where it suits your

organizational

scheme.

(

Engine Overview

2.2 Finding Your Assets

Game assets are things such as sound files, graphics files, game models, skins

for the models, client scripts, server scripts, etc. Deciding how these assets will

be organized is one of the most important decisions we will make while plan-

ning our game. I kid you not. How we organize our assets can have a signifi-

cant effect on our productivity as well as our game’s final disk footprint.

Unfortunately, deciding on an organizational scheme requires some expe-

rience and a plan. So, if this is your first time making a game, it may be a bit

hard to do. I suggest you follow the organization used by the FPS Starter Kit

to start and then, when you have accrued some experience, draw up your own

plan, based on your game’s specific needs.

Our sample game will use the Standard TGE Kit as a base.

2.2.1 Finding Assets—TGE FPS Starter Kit

The FPS Starter Kit that comes with TGE has the major directories and direc-

tory contents shown in Table 2.3.

/ This is the root directory and represents the directory from
which the executable was run. This is the highest directory

visible to TGE and scripts. It isn’t necessarily the same as the
root directory on your disk.

/common This directory contains files that are common between games.

The intention here is that these scripts, images, models, etc.,

are reused at least in prototypes and often in final games.

/creator This directory contains the built-in tool scripts, GUIs, and

other assets.

/starter.fps This is the game directory (sometimes referred to as a mod

directory) and includes all of the scripts, images, models, etc.
used in your game. The results of our effort will be stored in
subdirectories of this.

/starter.fps/client This directory contains all of the interface art, GUI definitions,

local preference files, and scripts that relate to the client's

 behavior.

/starter.fps/data This directory contains models, skins, mission definitions, terrain

files, and terrain textures.

\/starter.fps/server This directory contains gameplay scripts.

30

Torque from 10,000 Feet

2.2.2 Finding Assets—Included Lesson Kit

Because the assets that come with this guide are quite extensive and shared

between many portions of the kit, the asset chart is too large to print in the

guide. Please refer to the “Lesson Kit Assets” electronic appendix for a com-

plete listing and discussion of what assets there are and where they live.

2.3 Sim Hierarchy Overview

As noted previously, TGE is in effect an event-driven simulator. This is made

quite clear by the fact that the class structure starts with a class aptly named

SimObject (simulation object). This class and its children form the “sim hier-

archy.” The sim hierarchy can be roughly divided as follows.

SimObject. This is the root class for all simulation objects, that is, all
objects that are used to implement a game.

SimSet and SimGroup. Two container classes, the latter acting as base

class to the GuiControls and to ScriptGroup.

ScriptObject and ScriptGroup. Two classes used to create scripted classes.

These special classes give us the ability to associate fields and methods with
scripted classes, thus allowing us to neatly compartmentalize our scripts.

SceneObject. This class is the root class for all objects to be included in the
game scene and adds the concepts of position, rendering, and collision.

GameBase. This class is the root to most mission-placeable objects and

introduces ticking and datablocks.

ShapeBase, ShapeBaseData, and Children. The ShapeBase classes and

children are used to display models. These models are used to represent
small world objects, players, vehicles, pick-ups, power-ups, etc. These

classes all support complex visible geometry/features and an unlimited

number of collision meshes.

TSStatic. This is a lightweight shape-rendering class that does not incorpo-
rate any of the ShapeBase features. It merely renders a shape and encapsu-
lates it in a simple object-oriented bounding box. This is the preferred class

for noninteractive shapes that are used to add detail in scenes.

Interiors. This class is used to display models that represent any structural
object, including such things as buildings, bridges, walls, and other large
structures. This class supports standard binary space partitioning of the

models. Interiors support portals for more efficient subdivision of rendered

spaces.

Special Effects. A last set of classes are supplied that do not fit into either

the shape or interior hierarchies. These classes are used to provide a wide
set of possible special effects, including audio, visual, and physical (as
affects avatars and other game objects) effects.

Chapter 2

31

Part II

Figure 2.10.

“Torque input/output

architecture.

32

Engine Overview

2.4 TGE I/O Fundamentals

Out of the box, TGE supports inputs from mice and keyboards. With a little

work, it will support inputs from gamepads, joysticks, and other input devices

as well. TGE also supports basic file [/O out of the box.

2.4.1 TGE Device Input Architecture

When we speak of inputs in the context of TGE, we are talking about user

inputs from keyboards, mice, joysticks, and other devices. Although it is pos-

sible for there to be other types of inputs, the only ones we are interested in

are those that would be used to control gameplay. That said, inputs flow into

and through TGE as follows (see Figure 2.10):

e The OS (operating system) processes inputs and passes them to the TGE

Platform Layer.

e The TGE Platform Layer identifies and categorizes the inputs, then passes

them on to the Game.

e The Game processes the inputs if it can, or ignores them if there are no

defined actions associated with them.

Game input processing is the part we are interested in. As can be seen in Fig-

ure 2.10, the input is processed as follows:

1. The GlobalActionMap (see below) gets first dibs on the inputs. If it has no

mapping for an input, that input is passed on to the GUIs, or more specifi-

cally the Canvas.

2. The Canvas attempts to process an input, but passes it on if there is no GUI

control(s) programmed to use said input.

3. Lastly, the input is passed to any active (nonglobal) ActionMaps for pro-

cessing. If none of the currently stacked ActionMaps is coded to use the

input, the input is dropped.

Y
Global

ActionMap

TGE

Platform Y

Layer Canvas

v
ActionMap(s)

 Game

Torque from 10,000 Feet

ActionMaps

ActionMaps are a special class designed to capture and redirect inputs. There

are two kinds of ActionMap. There is the GlobalActionMap and the normal

ActionMap. The main differences between these are:

¢ GlobalActionMap, This is the daddy of input processors and supersedes all

other processing methods. This action map should not be popped from the

processing stack (see below).

e ActionMap. This is a generic action map. It takes lower priority than all

other processing methods. These action maps can be pushed and popped

from the processing stack as the game’s requirements change.

ActionMaps in Our Game

Our game will require some kind of mapping between keyboard and mouse

inputs to player movements and behaviors. We will stop briefly and show

what these mappings are and discuss how they are attached (indirectly) to

the player.

Processing Stack

What the heck is a processing stack, you ask? TGE implements an event queue,

which is used to collect all user inputs and various other events. These events

are then processed by the engine. The ActionMap is one consumer of these

events. Because ActionMaps can be stacked and because they process events

on the input queue, I refer to this as the processing stack.

In short, an ActionMap not on the processing stack is not catching and

therefore not processing input events.

2.4.2 TGE File l/O

TGE has a file manager that maintains a working list of all the files found in

the game directory and all subdirectories. This list is created on start-up. Sub-

sequently, the file manager will locate new files that you add and then attempt

to load from the console or via scripts. It will also notice when files have been

modified and recompile and load them when requested to do so.

In short, with TGE you can easily add new files and modify existing con-

tent without having to restart the engine. This is a huge timesaver when creat-

ing new content and while debugging.

Chapter 2

DDS
It is worth mentioning

that finding new files

without restarting

is anew feature

{introduced in version

1.4). If you are

currently using 1.3 ora

prior version, you may

use the setModpaths(]}

function to find new

files. This isn’t as nice as an automatic find,

\ but you can still work

_ without restarting.

33

Part Il

34

Engine Overview

File 1/O and String Manipulation in Our Game

Earlier, when discussing shapes to be used in our game, I alluded to the idea

that we would be able to modify the layout of our game. To do that, we will

need to create a special level file and then create the scripts to load and parse

it. The level file will also specify the starting position of our player, coins, tele-

port stations, maze blocks, and fireball shooters. By using a separate format,

we enable the ability to modify the game and add new levels using a simple

text editor. The scripts that do the loading and parsing will exercise several file

I/O and string manipulation features.

On a side note, we will also be using file 1/0 to load the contents of our

credits screen.

2.5 Move Along ... Nothing To See Here ... Move
Along...

Well, that was fun. That was a very fast and very dirty coverage of many, but

by no means all, of the features in the Torque Game Engine.

Next, we will break out the FPS Starter Kit and start playing around. In the

next chapter, I will introduce you to all of the content creation and placement

tools that come (built-in) with the Torque Game Engine. You will get to see

their power firsthand and to learn about how they work.

Chapter 3

Torque Tools

3.1 What We Are About to Learn

This chapter covers all of Torque’s internal (built-in) content creation and

placement tools. This includes tools both for building a 3D world and for cre-

ation of graphical user interfaces (GUIs).

In addition to learning about these very important tools, we will occasion-

ally pause to test out our newly acquired knowledge in exercises. The results

of many of these exercises will turn up in the game we will assemble in the

final chapter of this guide.

3.2 Torque’s Basic Editors

Torque includes two basic editors, the World Editor and the GUI Editor. The

World Editor is further broken down into eight tools. In the following pages, I

will be using short names for the individual tools wherever it does not create

ambiguity (see Table 3.1).

World Editor Fil This editor is composed of eight subeditors,
(WE) each one allowing you to modify and save

various aspects of a specific mission. This editor
can be used to edit existing missions or to

create new ones.

GUI Editor Fi0 This editor allows you to modify existing GUIs
(GE) and to create new GUIs, using a simple drag-

and-drop interface.

World Editor F2 This tool allows you to translate, rotate, and

Manipulator scale objects that have already been placed in
(Manipulator) the world.

World Editor F3 In addition to providing all the capabilities of the

Inspector World Editor, this editor allows you to view and
(Inspector) modify properties of individual mission objects.

World Editor F4 In addition to providing all the capabilities of
Creator the World Editor, this tool allows you to place

(Creator) . new objects in the current mission.

Table 3.1.

Torque’s basic editors and

tools.

35

Part II Engine Overview

Table 3.1 (continued).
Mission Area FS This tool allows you to adjust the boundaries

Editor of the current mission and provides a means to
(Area Editor) mirror the current terrain.

Terrain Editor F6 This tool provides the ability to directly

manipulate the terrain using the mouse as a
multi-operation brush.

Terrain Terraform F7 In addition to providing all the capabilities of
Editor the Terrain Editor, this editor allows you to load

(Terraformer) images as terrain files and to apply various
algorithmic generators and filters to the terrain.

Terrain Texture F8 In addition to providing all the capabilities of

Editor the Terrain Editor, this tool allows you to select

any number of textures and apply them using

a set of algorithms to determine blending and

placement.

Terrain Texture Window Menu > | In addition to providing all the capabilities of

Painter Terrain Texture the Terrain Editor, this tool allows you to select

(Terrain Painter and subsequently to apply up to six different
Painter) textures to the terrain.

3.3 The World Editor Tools

Let us tackle the World Editor toolset first, as it has the most components and

is the most likely place to start when creating a simple mod (modification) or

a new game.

As we investigate and learn how to use each of the World Editor tools,

please use the GPGT Lesson Kit (provided on the accompanying CD) and run

the “World Editor Training” mission.

Please note that, while

you are editing in the

World Editor, you can

get help simply by

pressing F 1. This will

bring up a help dialog

with descriptions of

the tools and their

features.

 3.3.1 World Editor Basics

Before leaping into the World Editor tools, let us review some things that

hold true for all of the tools. First, we will review the user interface devices.

. Subsequently, we will discuss the mechanics of movement and viewpoint

control, as well as object selection, translation, rotation, and scaling.

3.3.2 World Editor Devices

In this guide, the cursors, menus, and other graphical elements that you

encounter in the editors are referred to as devices. Simply stated, these devices

provide meaningful feedback to you regarding what action can or should be

taken. The terms below are mostly of my own invention, with the exclusion

36 of the appropriately named gizmo.

Torque Tools Chapter 3

3.3.3 Cursors

Table 3.2 explains what each cursor image means.

Device Table 3.2.

7 When the cursor looks like this, it means that the cursor is not Descriptions of cursors.
over a selectable object. In other words, you are pointing to

No-Select Cursor an empty space.

When the cursor looks like this, it means that the cursor is

over a selectable object. In other words, you are pointing to

Select Cursor an object that can be selected.

Pr When the cursor looks like this, it means you have

successfully selected an object’s gizmo axis in translation
Grab Cursor mode. In other words, you can move the object around by

clicking and dragging when this cursor device appears.

When the cursor looks like this, it means you have
successfully selected an object’s gizmo axis in either rotation

Rotate/Scale Cursor or scaling mode. It also appears when you have successfully
selected a bounding box face for scaling or rotation.

3.3.4 The Gizmo and Gizmo Scales

The graphic in Figure 3.1 represents the gizmo. The gizmo is a device that is

activated when you select one or more objects. It displays the three traditional

x-y-z axes. Individual axes are selectable and afford the ability to translate,

rotate, and scale.

By default, a gizmo axis is dark cyan when not selected and light cyan

when the cursor is over it or when it has been “grabbed.” Additionally, when

a selected gizmo is used for an operation, one of three scales will be shown:

the gizmo translation, rotation, or scaling scale.

This scale shows the current position of the xX! -51.024, y: -127.829, 2: 226.473 Figure 3.1.
object’s centroid when you use the gizmo to Gizmo Translation Scale The axis gizmo.
translate an object.

This scale shows the current degrees of rotation x: 0.000, y: 0.000, z: 1.000, a: 52.519

around the selected axis when you use the Gizmo Rotation Scale

gizmo to rotate an object.

This scale shows the current height, width, and w: 1.2000, h: 1.2000, d: 2.144

depth of an object when you use the gizmo to Gizmo Scaling Scale
scale it. <w,h,d> correspond to the x,y,z axes
of the gizmo.

37

Part II

38

Engine Overview

3.3.5 Menus and Windows

The World Editor provides a set of traditional menus for selecting the current

tool as well as other features (see Figure 3.2).

Please note that all of the menu options will be covered in Section 3.5.3,

“World Editor Menus.”

Figure 3.2. Figure 3.3.

World Editor menus. Tool windows.

Several of the tools have windows that appear
class

on the right side of the screen (see Figure 3.3). *superClass

Although these windows have many similarities,

it will be better to explain them individually in the

respective tool sections below.

3.3.6 Selection Boxes

When selecting a previously unselected object,

the selection cursor lets you know when you can select something, and the

green selection box (see Figure 3.4) shows which previously unselected object

will be selected.

Once you have successfully selected an object, the object will be shown

with both a red selection box and a yellow selection box (see Figure 3.5). The

red box is object aligned, while the yellow box is world aligned.

The purpose of the yellow box is to show which objects are selected as a

group and will therefore be affected by any actions you take. The red boxes

are to show which individual objects in the group selection box are actually

part of the selection. Notice that, in Figure 3.5, the leftmost and rightmost

characters are selected, while the middle character is not.

Once you have successfully selected an object, the selection box will turn

blue if your cursor passes over it (see Figure 3.6). Please note that this is not

true for drag-select.

Torque Tools Chapter 3

Figure 3.4. Figure 3.5. Figure 3.6.

Green selection box. Red and yellow selection boxes. Blue selection box.

"
iave onan 8 2684: (nuh 26684: (null

eat ae
3.3.7 The Handle and Level Grid

Every object in the world displays a handle (see Figure 3.7). The handle has

two labels next to it. Figure 3.7.
Object handles.

1. A number. The number signifies which object this is in the mission object

list and is the (server-side) ID for the object.

2. Aname. If the name is “(null)”, no name has been assigned to this object. \aae apurh|
Names are optional but very useful for scripting purposes. Selected handle

When an object is selected, a faint grid will appear (see Figure 3.8). The grid

is parallel to the world’s x-y plane and passes through the selected object at

 the handle. When multiple objects are selected, the plane passes through Unselected handle

the group handle, which is located at the axis crossing point for the group

gizmo.

This device can be used like Figure 3.8.

a ruler for placing objects accu- Level grid.

rately. Unfortunately, there is

no vertical equivalent.

39

Part I]

Figure 3.9.

The scale device.

Table 3.3.

Moving and changing

viewpoint.

40

Engine Overview

3.3.8 Scale Devices

You will see a scale device while editing the terrain and while adjusting terrain

parameters (see Figure 3.9). The premise of this device is simple. The 2D scale

(line with red dots) represents parameter in two dimensions. Depending on

the application, the horizontal spacing may represent elevation, radius, etc.

The vertical spacing may represent opacity, blending factor, strength of action,

etc. The red dots on the lines are control points. These points can only be

moved vertically. All scale interfaces come with a spin box to add or remove

control points, thereby increasing horizontal resolution.

Please note that you are better off typing in the value you want, because

the spinner changes do not take effect unless you edit the textbox.

3.4 World Editor Mechanics

Now that we have familiarized ourselves with the various devices available in

the World Editor, let’s discuss the mechanics of how we manipulate objects in

the mission using the mouse. We will talk about how to move around the mis-

sion, switch camera modes and viewpoints, select objects, and use the mouse

to manipulate position, rotation, and scale via the gizmo.

3.4.1 Default Movement and Viewpoint

Table 3.3 gives the keystrokes for moving around the mission and changing

camera modes and viewpoint.

Moving around W, A, S, D, SpaceBar

(Up, Left, Right, Down, Jump)

Looking around Py + Motion

Zoom E (Zooms when held)

Toggle free-camera vs. player view ALT+C

Toggle ist vs. 3rd POV TAB

(in play mode only) ©

Free-camera speed SHIFT + 1... SHIFT + 7

(World Editor Only) (slowest ... fastest)

Drop character at camera F7 (play mode after editing only)

ALT + W (World Editor mode only)
CTRL + F7 (both modes)

Drop camera at character ALT + Q (World Editor mode only)

Torque Tools

3.4.2 Object Selection and Translation

Table 3.4 shows how to use the mouse to select and translate objects.

Chapter 3

3.4.3 Using the Gizmo

As described earlier, the gizmo is the aptly named three-axis device that

appears when you select either a single object or a group of objects. The

gizmo has three individually selectable “handles” that run along the major

axes x, y, and z. These handles gives you the ability to translate, rotate, and

scale objects (see Table 3.5).

Desert Action Function Table 3.4.
Selection 5 . Selects: Selecting and translating

on object e Previously unselected object objects.
(see Figure 3.10a)

. ; . Selects: Figure 3.10.
Shift + Ai on object ¢ Previously unselected object . ;
(see Figure 3.10a) Deselects: Object selection actions.

e Previously selected object

Ay on empty space + Dra Selects:
(, ns 10b) 9]. Previously unselected object

see rigure °. ¢ Previously selected object

Please note that the drag box must
enclose an object’s centroid (red dot) to

select the object.

Object Ei D Translates:

Translation =| + Drag e Single previously unselected object

without using e Single previously selected object

gizmo e Multiple previously selected objects

aT ee Oe a

Mouse SS eetion ete

Drag left/right for x and y, up/down To translate Gj ; ;
(object-axis) 4] gizmo axis for z.

Drag left/right for x and y, up/down
To translate for z. In this mode, the gizmo aligns

(world-axis) SHIFT + Ai gizmo axis to the world axis and confines
translation to translation along the

selected world axis.

To rotate ALT + Pi gizmo axis Drag left/right.

To scale (single | CTRL + ALT + A gizmo Drag left to grow and right to
object only) axis oo shrink.

Table 3.5.

Using the gizmo.

41

Part il Engine Overview

Figure 3.11.

Using the gizmo on single

and multiple objects.

Figure 3.12.

Using a bounding-box

plane to scale.

42

Single object gizmo Multiple object gizmo

Gizmo translations and rotations can be applied to single or multiple

selected objects (see Figure 3.11). Rotations are always about the gizmo axis,

which is the handle for single selected objects and the group handle for mul-

tiple selected objects.

Gizmo scaling can only be applied to a single selected object.

3.4.4 Scaling using Bounding-Box Planes

While experimenting, | accidentally discovered that there is another way to

scale objects with the mouse. Not only is this method slightly more intuitive,

but it also doesn’t require the use of the gizmo. Try the following:

1. Deselect all objects.

2. Find the object you wish to scale and select it.

3, Press and hold CTRL + ALT.

4, Click a bounding-box plane and drag the mouse to scale. You'll notice that
the selected side of the bounding box is filled with a medium blue hash.

That is all there is to it! Figure 3.12 shows a selected bounding-box face.

Torque Tools

3.5 World Editor (Manipulator]

3.5.1 Starting the Manipulator
1. Start the World Editor by pressing F11.

2. Start the Manipulator by pressing F2.

3.5.2 The 3D World View Window

The real benefit of the Manipulator tool comes from the fact that you can tra-

verse the world and the 3D world view is not blocked by any dialogs or menus

(except for the World Editor menu), giving you an almost-full screen view

while you manipulate objects via mouse and hot keys. Upon examination, it

can be seen that this tool is very plain (likely as intended). In the sample view

in Figure 3.13, we can see the world and its contents. We can apply all stan-

dard mouse manipulations as described in Section 3.3, “World Editor Tools”.

3.5.3 World Editor Menus

All World Editor tools have a top menu containing the same elements. How-

ever, in some tools, certain menu selections will be disabled. Tables 3.6-3.10

give a brief description of each menu and the menus’ choices. Some options’

descriptions will be deferred until we discuss the specific tool that is affected

by said option.

Chapter 3

Figure 3.13.

World Editor screen

(Manipulator mode}.

43

Part Il Engine Overview

Table 3.6. Menu Item 4 ohn

File menu. New Mission ... Clicking this option will generate a new mission based
on preset values. This generates the same mission

every time.

WARNING: This wipes out the current mission. If

done at all, it should be done once and only once,

before editing.

Open Mission ... (CTRL + O) | Brings up a dialog to allow you to load an existing
mission.

Save Mission ... (CTRL +S) | This saves your current mission.

Save Mission As... As with “Save Mission ...”, this allows you to save your
mission, but in this case, you can specify a name and
(existing) directory for the mission file.

Import Terraform Data ... This feature is deprecated and no longer used.

Import Texture Data ... This feature is deprecated and no longer used.

Export Terraform Bitmap ... | This choice is enabled by the Terraformer tool. We will

discuss it there.

Table 3.7. | MenuItem a
Edit menu.

44

Undo (CTRL + 2) Undo the last operation.

WARNING: This does not undo all operations, so

back up early and often.

Redo (CTRL + R) Redoes last operation. As with undo, this does not apply to
all operations.

Cut (CTRL + X)
Copy (CTRL + C)
Paste (CTRL + V)

Standard cut-copy-paste. Can be applied to single and

multiple objects.

Select All (CTRL + A) Selects all objects (shapes and interiors) in the mission.

Select None (CTRL + N) Deselects previously selected terrain. This does not

deselect objects.

Relight Scene (ALT + L) Causes the engine to relight the current terrain and apply
shadow maps. This trips up a lot of beginners. I will

discuss this further when we learn about adding interiors.

World Editor Settings ... This brings up the World Editor Settings dialog. (Discussed

below.)

Terrain Editor Settings ... This feature relates to the Terrain editor and will be

discussed there.

Torque Tools Chapter 3

 sees
Description

Render Plane Show plane when objects are selected.

Render Plane Hashes Show hashes when objects are selected.

Render Object Text Show objects’ names and IDs.

Render Object Handle Show objects’ handles (red dot).

Render Selection Box Show selection boxes.

Plane Extent Length by width dimensions of plane (floating point OK).

Grid Size Hash spacing for grid (floating point OK).

Show Mouse Popup Info Show mouse popup scales when moving-rotating-scaling.

Move Scale

Rotate Scale
Scale Scale

These values increase or decrease mouse sensitivity for

individual mouse actions (move, rotate, scale).

Planar Movement

Collide with
Object’s Bounding Box

Objects Use Box Center

}

Checked: Object will move along plane when dragged.

Unchecked: Object will attempt to follow terrain when

dragged.

If checked, object can be selected by placing cursor
anywhere on object’s bounding box.

If checked, handle is in object center; otherwise at lower

limit of object bounding box.

Axis Gizmo Active Enable gizmo.

Min Scale Factor

Max Scale Factor

Determine minimum and maximum multiple by which
objects can be scaled from original size.

Visible Distance Minimum distance within which object handles are visible/

selectable. (This has nothing to do with visible distance
during gameplay. Examine the Sky object for that.)

Gizmo Screen Len Gizmo axis length in screen pixels.

Project Distance Ray length for selection cursor.

Table 3.8.

World Editor settings.

To modify the World Editor

settings, click Edit > World

Editor Settings..., then

change the appropriate

setting.

Description

Lock Selection Disable mouse actions (drag, rotate, scale) on current

selection(s).

This does not prevent changes via the Inspector window
although a a will show up in the World Editor tree.

Unlock Selection Re-enable mouse actions on current selection(s).

Hide Selection Hide (i.e., do not render) current selection(s).

Table 3.9.

World menu.

45

Part II Engine Overview

Table 3.9 (continued).

Show Selection Un-hide previously hidden object(s).

Use the Inspector to select these objects. They have a a next
to them in the World Editor tree.

Delete Selection Delete current selection(s).

Camera to Selection Move camera to centroid of current selection(s).

Reset Transforms e Un-rotate selected objects that are rotated (i.e., align to
objects’ default alignment).

e Un-scale selected objects that are scaled (i.e., scale all objects’

dimensions to 100% of default scale).

e Works for multi-select.

This is not the same as Undo.

Drop Selection Make currently selected object(s) drop according to drop current

rule (see Table 3.10).

Add Selection to

Instant Group

We will discuss this feature when we discuss the Inspector.

Drop at... We will discuss these in Table 3.10.

Table 3.10.

“Drop At...” menu item.

In the World menu drop-

down, there is a group

of “Drop at xyz...” radio-

selections {only one can

be selected). Before you

start placing objects in

the Creator, you should

understand what these

settings are going to do

for you.

46

 Lee rhs

Drop at Origin This causes new or pasted objects to be created at the World Origin.

Drop at

Camera

This causes new or pasted objects to be created at the current location
of the current camera. You could think of there being three cameras:

Figure 3.14 shows an object dropped in 1st and 3rd POV to clarify this.

one in the character's head during 1st POV (Point of View) viewing,

a second in the following camera position during 3rd POV, and

the third being the actual free-floating camera.

Drop at

Camera w/Rot

This does the same as “Drop at Camera” with the addition that the

object will have the camera’s rotation.

Drop below
Camera

In this mode, new objects are created somewhere below the current
camera.

Drop at Screen

Center

This is the default “drop at” mode. I think this mode’s title is a bit of a
misnomer. It seems that this behaves more in the following fashion:

Cast ray from camera eye:

On collision with object bounding box, water, or terrain, drop the
object at point of collision.

If ray extends beyond “Project Distance” (set in World Editor dialog),
drop object at camera eye (position).

Drop at Centroid

This option allows you to select multiple objects and have the newly
created object placed in the virtual centroid of the group.

Torque Tools Chapter 3

Objects are dropped to the ground at mission center. I wouldn't

use this if there is any possibility that there could be an overlapping
interior at the mission center, because dropping another interior there
will crash the editor.

The Window menu is probably the most easily understood. It allows you to

select which of the World Editor tools you wish to use. The only important

thing to remember is that you must use this menu to select the Terrain Texture

Painter tool since there is no hot key for it.

3.6 World Editor Inspector (Inspector]

3.6.1 Starting the Inspector
1. Start the World Editor by pressing F11.

2. Start the Inspector by pressing F3.

3.6.2 Examining the Inspector

The Inspector tool (Figure 3.15) allows you to select an object and manip-

ulate its script-exposed parameters via text boxes, spinners, radio buttons,

checkboxes, etc. These parameters will vary based on the object. Later, we

will examine specific parameters for water, terrain, the character, the sky, etc.

Now, for the purpose of learning about this tool, we will work with a simpler

object, namely the SpawnSphere. The purpose of this object is unimportant at

this time. The key thing is that it is easily located and manipulated.

To begin, look directly overhead. You should see a gray object. Select it

and you should have a view similar to Figure 3.16.

Taking a quick inventory of the screen elements, we see the World Editor

menu at the top, the 3D World View window which takes up nearly two-thirds

of the screen, the World Editor tree window in the upper right, and finally the

World Editor Inspector window in the lower right.

3.6.3 World Editor Tree

Before we jump into the relatively straightforward World Editor Inspector,

let’s discuss the World Editor tree and some important organization features

it provides.

First, expand the list in the World Editor tree window. The initial list is

completely collapsed, which doesn’t do us a lot of good when we’re trying to

manipulate objects.

Table 3.10 (continued].

Figure 3.14.

Drop at camera /ouch!}.

47

Part Il Engine Overview

Figure 3.15.

World Editor screen

(Inspector mode}.

cloudText |

cloudHeightF ;

sloudSpeed2 0.002 _
cloudSpead#0.01

Figure 3.16.

The Inspector screen

elements.

 48

Torque Tools

1. Expand the MissionGroup SimGroup

by clicking the [+] next to the text

“####: ~~ MissionGroup - SimGroup.”

See Figure 3.17; numbers may vary
from illustration.

2. Expand the PlayerDropPoints - Sim-

Group.

You should now have something similar to Figure 3.17. If for some reason the

SpawnSphere entry is not highlighted, please click on it once to select it.

Locked Items

You will notice that some entries in the tree have a lock icon next to them.

This means that the entry is “locked” and cannot be edited. You may lock an

item by creating a dynamic field (see “Inspector—Dynamic Fields” in Section

3.6.6) named “locked” and then setting that field to true. You may unlock an

entry by deleting this field, or by setting it to false.

3.6.4 SimGroups

At this point, you may be asking, “What is a SimGroup?” Subsequent chap-

ters in Part III will get into the nitty gritty details about SimGroups, SimSets,

and SimObjects. For now, we’ll simply describe SimGroups as a means by

which we organize objects. This is both useful from an organization sense,

i.e., knowing where to find things while you are editing, and for scripting

purposes. By predefining a consistent set of SimGroups and by organizing

your objects within them, your current job as a mission/level designer will be

greatly simplified. Your script writers will thank you also. If that is your job,

too, then pat yourself on the back.

As can be seen from the current view of the World Editor tree, SimGroups,

as well as particular entities (SimObjects), can be nested within SimGroups.

In fact, every mission entity is present in this list and will be found nested

within a SimGroup.

So, how exactly do we place objects within a SimGroup? Let’s find out.

First, make a duplicate copy of the SpawnSphere. We already have it selected,

so all you need to do is type CTRL+C (to copy) followed by CTRL+ V (to

paste). Alternately, you can use the Edit Menu > Copy/Paste operations.

Now that you’ve created a new SpawnSphere, you need to locate it in

the World Editor tree. If you’ve followed the instructions above, you will find

the new SpawnSphere at the bottom of the tree (see Figure 3.18). We would

much rather have it in the PlayerDropPoints - SimGroup with the rest of the

SpawnSpheres. So, let’s manually move this one to the correct spot and then

learn how to place objects in the right SimGroup the first time.

Chapter 3

Figure 3.17.

World Editor tree window.

Figure 3.18.

Part Il

Figure 3.19.

Table 3.11.

50

Engine Overview

Moving Existing Objects into a SimGroup {Add-Group or

Instant Group)

The new SpawnSphere should already be selected, but if it isn’t, please click

on it to select it. Now, use the slider on the right side of the World Editor tree

and find the PlayerDropsPoints - SimGroup. Select this as the Add-Group

through the key/mouse combination: ALT + By. The Add-Group should now

be selected with a gray background (see Figure 3.19).

Now, select the menu item World > Add Selection to Instant Group. Voila!

The SpawnSphere is in the PlayerDropPoints - SimGroup (see Figure 3.20).

These steps will work in all versions of Torque, but in version 1.4 and later,

you may simply drag and drop objects from SimGroup to SimGroup.

Creating Objects in a Preexisting SimGroup (Add-Group]

OK, so that was a hassle. How do we get objects to place in the correct Sim-

Group when we create them? Simple. You already have a SpawnSphere in

your copy buffer, and you already have the Add-Group selected (see above).

Paste another SpawnSphere and it should show up in the PlayerDropPoints

- SimGroup (Figure 3.21). Easy as pie! The trick is to select your instant

group before pasting objects and they will automatically be placed in that

SimGroup.

3.6.5 World Editor Key Stroke/Mousing List

Table 3.11 is a summary of operations you may perform on SimGroups and

Objects with the mouse and key combinations.

ats 5 | ‘on SimGroup Set current Add-Group.]

CTRL + Aj On SimGroup (De)select all members in SimGroup.

ctr + Ay On Object (De)select object(s).

suirt + Ef On Object Select multiple objects.

3.6.6 World Editor Inspector Window

Now let’s address the World Editor Inspector. This is, of course, the window

from which this tool gets its name. The purpose of this window is to allow you

to inspect and modify parameters for individual objects. If you play around

a bit and click on different objects, you will begin to see that different object

types have different parameters. For now, we’ll address the more common

Torque Tools Chapter 3

values, add new values, and finish off with some tips on using the interface

effectively. We will leave a detailed inspection of individual objects’ param-

eters for Chapter 8, “Mission Objects.”

Inspector—Common Fields

Table 3.12 describes the common fields used in the World Editor Inspector.

Description Table 3.12

Position (X,Y¥,2Z) Three floating-point values representing the coordinates of Common fields in
the selected object in world space. Inspector.

Rotation (X,,Y,,2,,A) | Four floating-point values where the first three are

multipliers and the fourth value is the angle (in degrees) of

the rotation(s).

Example: rotation 0 1 0 90.0 means the object is

rotated 90 degrees about the y-axis, relative to the world-
axis.

Scale (X,,Y,,2,) Three floating point values representing a relative scaling.

The values act as multipliers of the object’s default
dimension(s) in the indicated axes.

Example: scale 1 1 2 means that this object will be
twice as tall as the default when loaded into the world.

Please note that these values correspond indirectly to

those you see when mouse scaling. Mouse-scaling values
are actual world dimension.

shapeName This parameter’s name is a misnomer. It actually gives the
(shapes only) relative path and filename of the selected shape.

interiorFile This parameter gives the relative path and filename of the

(interiors only) selected interior.

Object Name There isn’t actually a parameter tag for “Object Name,” but
there is an editable text field for it. The text field is located
to the right of the Apply button. You can type just about
anything in this field, though no spaces are allowed. Click
Apply to name your object. Please note that objects can

be given the same name. We'll leave further discussion of
object naming for a later chapter. Just remember that this
is how you change it from the Inspector.

Inspector—Dynamic Fields

I won’t explain what dynamic fields are yet, but rather I will explain a way Figure 3.22.

that they can be added to objects. To add a dynamic field:

e select the object to which you wish to add a field,

e click the Add button found in the Dynamic Fields section of the World Edi-

tor inspector window (see Figure 3.22), and 51

Part II

Figure 3.23.

‘Mlocked ‘true

Figure 3.24.

World Editor screen

{Creator mode}.

52

A ostField (10 _ |

Engine Overview

e give the field a meaningful and unique name and an initial value.

To modify the value of a dynamic field, follow the same steps as changing

the value of any other field. Just modify the contents of the text field next to

the dynamic field name and click Apply.

To delete the dynamic field click on the garbage-can icon next to the

dynamic field (see Figure 3.23), and the field will be removed permanently.

This cannot be undone.

3.7 World Editor Creator (Creator]

3.7.1 Starting World Editor Creator
1. Start the World Editor by pressing F11.

2. Start the Creator by pressing F4.

3.7.2 World Editor Creator Window

The Creator (see Figure 3.24) tool is used to create (or place) new content.

From the World Editor Creator, we can select objects to insert into our current

mission. Figure 3.25 shows the Creator’s top-level folders.

Torque Tools Chapter 3

e Interiors. Buildings and other interiors.

Figure 3.25.
e Shapes. Animatable shapes. World Editor Creator

e Static Shapes. Lightweight inanimate shapes. top-level folders.

e Mission Objects

¢ Environmental stuff like the sky, sun, water.

¢ Mission stuff like MissionArea, Triggers, and Cameras.

¢ System stuff like SimGroups.

Placing (Creating) New Objects

Creating new objects is much like pasting objects. Simply

1. move to the location in the mission area where you would like to place the

object;

2. look approximately where you want to place the object;

3. find the object you wish to place by looking in the World Editor Creator

tree; and

4. click once on the object in the list.

Once an object is placed in the world, you can freely manipulate its position,

rotation, and scale via the mouse. If, however, you want to change object

parameters, you’ll need to switch back to the Inspector.

Adding Objects to Creator Tree

When the engine is first started, it creates a list of all files found in the mod

directory. Later, when we start the Creator, the Interiors tree is populated

with all known DIF files, and the Static Shapes is populated with all DTS files

found. In both cases, the original directory hierarchy for the mod is main-

tained (see “abcshack” sample below). ee

The Shapes tree is populated with ShapeBase objects created in scripts.

We'll defer discussing these shapes until Part III, “Game Elements.” For

now, let’s learn how to get basic interiors and shapes into their respective

trees.

y ON

f Spaces in a folder

sh name will make

the parts after spaces

show up like a sub-

directory.
Adding Interiors to the Creator Tree rectory

ing fi ; Bobs Room\room.dif
Torque needs the following files to create an Interior: OPS ROOMA LOOM. AL

produces:

e DIF. Once an Interior has been properly generated, there will be a file [-]- Bobs

named interior_name.dif, where interior_name is whatever you chose to [-]-C Room

name your interior object. ‘oom

¢ Graphics file(s). An Interior will have at least one graphics file. By default, /

the graphics files used for the Interior need to be located in a directory

above the Interior’s DIF file or in the same directory as the DIF file. 53

Part ll

Figure 3.26.

Figure 3.27.

54

Engine Overview

Example:

1. In the directory “example\gpgt\data\GPGTBase\interiors\abcshack” you

will find a file named abcshack.dif. Make a copy of this file and rename it

myabcshack.dif.

. Completely exit the GPGT Lesson Kit, reload it, and start the World Editor

Creator again.

. Now, in the Creator tree, under Interiors > gpgt > data > GPGTBase >
Interiors > abcshack, you will see a new Interior named myabcshack (see

Figure 3.26).

Adding Static Shapes to the Creator Tree

Torque needs the following files to create a Static Shape:

DTS. Once a shape has been properly generated, there will be a file named

shape_name.dts, where shape_name is whatever you chose to name your

shape object.

Graphics file(s). A shape will have at least one graphics file. By default,

the graphics files used for the shape need to be located in the same direc-

tory as the shape’s DTS file.

DSQ(s) (optional). For an animated shape created in 3ds Max, there is a

third type of file, containing animation data. For simplicity’s sake, this will

not be discussed here, other than to note that they may exist. By default,

the DSQ file(s) used for the shape need to be located in the same directory

as the shape’s DTS file.

Example:

1. In the directory “example\gpgt\data\GPGTBase\shapes\markers” you

will find a file named dummy.dts. Make a copy of this file and rename it

mydummy.dts.

. Completely exit the GPGT Lesson Kit, reload it, and start the World Editor

Creator again.

. Now, in the Creator Tree, under “Static Shapes > gpgt > data > GPGTBase

> shapes > markers” you will see a new Shape named mydummy (see

Figure 3.27). Try placing it.

You might be wondering why the object showed up in Static Shapes

instead of Shapes. Objects under Static Shapes are lightweight objects (created

with TSStatic). Objects under the Shapes tree are created using the ShapeBase

hierarchy. ShapeBase adds several capabilities, including animations, sounds,

rendering effects, etc. This requries the creation of a datablock. We will dis-

cuss creating ShapeBase objects and their datablocks in Chapter 6, “Basic

Game Classes.”

Torque Tools Chapter 3

3.8 Mission Area Editor (Area Editor]

3.8.1 Starting the Mission Area Editor
1. Start the World Editor by pressing F11.

2. Start the Mission Area Editor by pressing FS.

3.8.2 The Mission Area Editor Window

In the upper right corner of the screen, you will see a blue and white image

(see Figure 3.28). This image represents the mission map. The Mission Area

Editor provides the ability to select the size and location of the mission bounds

(or area). Interestingly, it also provides a terrain editing feature.

Editing the Mission Area

The Mission Area Editor is very simple to use. Simply click the Edit Area check- -

box, and handles will appear on the mission area box. Now drag and resize to

your heart’s content. You will be able to see the effect of your changes in the

3D World View window also. One thing to keep in mind is that the image is

inverted; that is, the top of the image is what most would consider south, the

bottom north, and the left and right, respectively, west and east. This could

quickly become cumbersome to remember, so the creators of the Area Editor

Figure 3.28.

Mission Area Editor screen.

55

Part Il Engine Overview

Figure 3.29. Center the Mission Start terrain

Mission Area Editor details. Enable Area editing. Aree in terrain. mirroring mode.

Clickin
box to Mission Area bounds Mission Area location Field Of View (FOV) 'V’.

(3D and 2D). and size metrics.

provided a device to give you a better hint as to where you are looking when

you edit. The device I’m speaking of is the Field Of View (FOV) ‘V’. Look at

the labeled example in Figure 3.29.

Before moving on, there are a couple of things that you should know.

* You can use the Area Editor window to rapidly relocate your character/

camera. Simply be sure that the Edit Area button is not checked and click

in the window. Your character/camera (depending on view mode) will

‘jump” to that point.

e If you have made modifications to your terrain using the Terraformer or the

Terrain Editor, those changes will not automatically be reflected in the Area

Editor image. To refresh the image, do the following.

1. Make your terrain changes.

2. Start the Area Editor and make sure Edit Area is checked.

3. Drag the mission area off center.

4 . Recenter by clicking the Center button. The updated terrain should now

be reflected in the Area Editor image.

The moral of this story is to edit your terrain topography first, then edit your

mission area. And do all this before placing interiors, shapes, or other mission

objects.

56

Torque Tools Chapter 3

Rotate mirroring Apply mirroring Cancel mirroring
plane operation operation

Mirroring

destination

Mirroring plane

Mirroring source
Mirroring the Mission Area

As I mentioned above, the Mission Area Editor also provides what I would

label a “terrain editing feature”’—namely, the ability to mirror the terrain. This

is very useful if you wish to create a balanced (in terms of terrain obstacles)

mission area. To use this feature, click on the “mirror” and you will see some-

thing similar to Figure 3.30. The application of this tool is simple:

e select the orientation of the mirroring plane (with <-- --> buttons) and

e click Apply to mirror copy the source onto the destination. |

3.9 Terrain Editor

3.9.1 Starting The Terrain Editor
1. Start the World Editor by pressing F11.

2. Start the Terrain Editor by pressing Fo.

3.9.2 The Terrain Editor Window

When you start the Terrain Editor, you will see a shot like the one in Figure

3.31. This looks very much like the view in the Manipulator, except that there

are no windows obscuring your view. However, if you look closely, you’ll

Figure 3.30.

Mirror in Misston Area

Editor.

57

Part Il

Figure 3.31.

Terrain Editor screen.

58

Engine Overview

notice some odd squares following your cursor around while you move your

mouse. These squares are yet another Torque user-interface device, the pur-

pose of which is to give you feedback on what terrain area will be affected

when you choose to manipulate it and, to some degree, how it will be affected.

Before we jump right into learning how to edit the terrain, let’s look at the

other two devices on the screen.

The Over Vertex Brush Scale

I refer to the text beside the label “(Mouse Brush)” in Figure 3.32 as the Over

Vertex Brush Scale. The purpose of this scale is twofold.

1. It shows how many vertices are currently under the brush. In Figure 3.32,

we have 69 vertices under the brush.

2. It shows the average elevation of the vertices under the brush.

The Selected Brush Scale

I refer to the text beside the label “(Selection)” in Figure 3.33 as the Selected

Brush Scale. The purpose of this scale is twofold.

1. It shows how many vertices are currently selected. (We'll learn about

selecting below.)

2. It shows the average elevation of these selected vertices.

Torque Tools Chapter 3

Figure 3.32.

The Over Vertex Brush

Scale.

{Mouse Brush) 2 6% avg: 155.978714

(Mouse Brashy os: 69 avg: #5.086 7 (Sclection) iO sue 6

Figure 3.33.

lo oe I ee nd The Selected Brush Scale.

(1) OOP ee es Yr ce CZ ee DS pote Pee) hy ces a)
3.9.3 Editing

There are two basic modes for editing via the Terrain Editor:

1. Brush mode. The default mode, which I call brush mode, is a free-floating
9 x 9 vertex brush. You can adjust the shape and hardness of the brush as .

well as change its size by rough increments. In addition, this mode pro-
vides several] operations.

2. Selection mode. The second mode, which I use less frequently, but which can

do things that you cannot do in brush mode, is what I call the selection mode.

In this mode, you select arbitrary blocks of terrain. Then, you can perform a
single operation upon them—modify their height via mouse movement.

Editing in Brush Mode

I think it is fair to say that most of your editing is going to be in brush mode,

and because it is the default mode, I’ll discuss it first. As mentioned pre-

viously, you can modify the brush shape, hardness, and size. Figure 3.34

describes the details that are modifiable in the Brush menu.

basic shapes:

e a box or

e a circle (roughly).

You may select one or the
other.

Figure 3.34.

Details of the brush menu.

Hardness: A soft brush
has a “tunable” strength

of action across the brush,

whereas a hard brush acts

at 100% strength across
the entire brush.

Size: As can be seen,

you may select one of six
brush sizes. Take note of
the keyboard shortcuts. 59

Part Il

Table 3.13.

Action menu descriptions.

Figure 3.35.

Action menu.

Table 3.14.

Making selections.

60

Engine Overview

Basic Brush Editing Actions

OK, now that we know about basic brush manipulation, what about the opera-

tions? In Table 3.13, let’s take a look at the action menu (shown in Figure 3.35).

Add Dirt * Raises terrain under brush.

Excavate * Lowers terrain under brush.

Adjust Height * Temporarily selects vertices under brush.

e Mouse Up—raises vertices

e Mouse Down—lowers vertices.

Flatten Sets all vertices under brush to average height of vertices under brush.

Smooth * Does a nearest-neighbor elevation average on vertices under brush.

Set Height Sets all vertices to preselected height. (See “Terrain Editor Settings”
section for setting this value.)

Set Empty ** Removes the terrain between the outer edges of the brush.

Clear Empty ** Puts terrain back in spots where it was previously removed.

Paint Material Paints vertex with currently selected texture. (See Section 3.12, “Terrain
Texture Painter.”)

* This action is affected by brush hardness settings.

set of vertices. ** Not a vertex operation per se. These operations modify the block of terrain between a

Selection in Brush Mode

All right, so what about this other mode, selection? There isn’t really much to

it. To get into selection mode, just open the Action menu (see Figure 3.35) and

click Select. Now, you can select terrain as explained in Table 3.14.

Previously Unselected Vertex

Selects vertex.

Previously Selected Vertex

May increase strength of action (see discussion of brush

hardness below) if the selection cursor has a stronger
value than the currently selected vertex’s action strength.

 cTRi +
Previously Selected Vertex

De-selects vertex.

Torque Tools

Having selected the terrain blocks that we wish to modify, we can open

the action menu and click Adjust Selection. Now, we can Bj and drag up/

down to raise/lower the elevation of the selected blocks.

To leave selection mode, select any other operation in the Action menu.

Also, once selected, vertices stay selected, regardless of mode. If you wish to

deselect all selected vertices, press CTRL +N or click Select None in the Edit

Menu.

Chapter 3

Table 3.15.

Brush Hardness Brush hardness and

Brush hardness has been mentioned Red Hardest (100%) coloration.
several times but not completely Orange Hard (> 50%)

explained. When the brush _hard-

ness is set to Soft, the action strength Yellow Soft (< 50%)
along the diameter of the brush can Green Softest (almost 0%)
be modified. In simple terms, if the

strength of action is set low, then the Figure 3.36.

value change for that part of the brush

is also low. If the strength of action

is set high, the value change for that

part of the brush will be high. This

attenuation is in relation to the move-

ment of the mouse. The brush gives

strength of action feedback through

coloration (see Table 3.15). Brush

coloration is a continuous scale from

red to green. You can manipulate this hardness in the Terrain Editor Settings

dialog found under the Edit menu. See Figure 3.36 for examples.

Medium Seleotion

Terrain Editor Settings

Earlier, I deferred a discussion of these settings. Now is the time to under-

stand them. The Terrain Editor Settings... (see Figure 3.37), found under

the Edit menu, gives us

some additional control

beyond brush — shape,

hardness, and size. Table

3.16 gives further expla-

nation of the settings

found in this dialog box.

Brush hardness results.

Figure 3.37.

Terrain Editor Settings

dialog box.

61

Part Il

Table 3.16.

Terrain Editor settings.

Engine Overview

Soft Selection This spline scale modifies the brush hardness. Left is the center of

spline the brush and right is the outer edge.

<Radius> See “Selection and <Radius>” section.

Adjust Height Increment by which the height of fully selected (hard) terrain is

adjusted per mouse tick,

Set Height Height to set selected terrain to when Set Height operation is used.

Scale Height Increment by which height is scaled when using scaling operations.

Smooth Factor Strength of smoothing operation. Higher values smooth more
aggressively but may produce less interesting terrains as a result.

Selection and <Radius>

Instead of attempting to explain <Radius> with words, I give a pictorial

example in Figure 3.38. In the following sequence, I have changed to selection

mode and am using a 1 x 1 brush. | then select four separate vertices. Next,

after opening the Terrain Editor Settings dialog, I change the radius values to

those shown and hit Apply. See how the selection changes?

Figure 3.38.

Example of using <Radius>.

62

<Radius> ==

<Radius> ==

<Radius> =

<Radius> == 14

Slight increase in strength of action
(greens becoming more yellow).

<Radius> =
Larger increase in strength of action (green selections are almost entirely yellow).

<Radius> == 16

Torque Tools Chapter 3

3.10 Terrain Terraform Editor (Terraformer]

3.10.1 Starting the Terraformer
1. Start the World Editor by pressing F11.

2. Start the Terraformer by pressing F7.

3.10.2 The Terraformer (An Overview}

Of all the in-game editor tools, the Terraformer is probably the most elaborate

and complicated. The shortest explanation of the Terraformer is that it is a tool

to algorithmically build terrains. You may ask why you would want to use this

tool to build terrains. The number one reason | can think of is that it is a fast

way to create interesting terrains.

In this section, I provide the following details about the Terraformer:

¢ description of Terraformer windows,

* summary of all operations,

¢ rundown on how operations are applied,

e brief descriptions of the individual operation interfaces, and

¢ a list of important Terraformer factoids.

Figure 3.39.

Terraformer screen.

 63

Part II

Figure 3.41.

a. Terraformer operations

tree.

b. Terraformer operations

pull-down menu.

64

Engine Overview

3.10.3 The Terraformer Preview Window

If you are reading this guide from front to back, this will be the first time that

you have seen the window in Figure 3.40. You'll note that it is similar to the Mis-

sion Area Editor window. In fact, this window displays very similar data. For the

purpose of this discussion, we’ll focus on the following aspects.

1. Center marker. There is a faint

white + in the preview window.

This marks the center of the map.

Every time you apply Terraformer

operations, this is where the cam-

era will be moved to.

2. FOV marker. There is a red V that

is always in the center of the win-
dow. This shows your current field

of view, i.e., area in your view rela-

tive to the map.

Figure 3.40.

Terraformer window.

3, Boundary marks. In addition to

the center marker, there are faint
horizontal and vertical lines, repre-

senting the boundaries of the cur-
rent heightmap.

4. Heightmap image. Although it may not be obvious at first, the image in
the preview window is a translation of the heightmap. The funky coloring
can be interpreted very easily. The darker an area is, the lower it is; like-

wise, the lighter an area is, the higher it is.

(Mouse Brush) 69 avg: 162.89 3569

3.10.4 Terraformer Operations Tree

In the lower right corner of the screen, you will find the Terraformer operations

tree. There is a button labeled Operations and clicking on this will bring up

a pull-down menu with all the operations (see Figure 3.41). When you select

an operation, it is added after the currently highlighted operation (so you can

insert new operations into the middle of a list of existing operations).

Terraformer Operations _

Each of the Terraformer operations has its own settings. These can be accessed

in the upper right window. Before we cover these, let’s quickly enumerate and

describe the general properties of the operations.

In his Tribes editing guide, Editing Maps and Missions in Tribes 2, Tim

Hammock appropriately categorizes the operations as either “generators” or

“filters.” In addition, I would like to add the category “base”. Table 3.17 gives

a summary of the base, generator, and filter operations.

Torque Tools Chapter 3

Table 3.17.

Base, generator, and filter Terraformer operations.

_ Base _ Summary ibe eae ee

General This ts the default operation. It cannot be removed from your list of operations. The values set in this
operation are used by subsequent generators and filters.

Generator Summary _ ee

fBm Fractal The random fractional Brownian motion generator (if you were wondering what the acronym means) is a

basic terrain generator, It produces rolling hills with various steepness based on settings. It tends to produce
smoothly topped hills but can produce jagged peaks.

Rigid Another fractal-based generator, this tends to produce hills with serrated (or sharp) peaks.
MultiFractal

Canyon This fractal-based generator produces a series of troughs (canyons). It can produce shallow to deep

Fractal canyons that run straight or twist.

Sinus This generator would probably be impossible to get a handle on without the code. However, a quick peek
shows that this generator creates terrain by iteratively adding the scaled sum of a sine and cosine pair with

some basic noise for flavor. Just remember that, ignoring the noise element, all terrains produced with this
generator have the same base shape. Your choice of settings will determine how this shape is applied to

progressively smaller sections of the terrain. I’ll give more details below.

Bitmap This operation allows you to import an image file as your terrain heightmap.

Filter Summary its

Turbulence This filter erodes and redeposits terrain features and kind of reminds me of the smudge brush applied

algorithmically. It seems to erode more than it redeposits. Both of these actions are done in a swirly,
turbulent (therefore the name) fashion. This filter significantly alters the look of your terrain.

Smoothing This is a simple nearest-neighbor averaging filter. It will tend to remove jagged areas in your terrain.

Smooth This is like the smooth filter but is limited to smoothing terrain that is at or below the level of global water

Water height (set under General operation). No smoothing is done for features above the water height.

| Smooth As the name implies, this filter affects specific regions based on their characteristics. Plateaus with jagged

Ridges/ edges will be rounded at the edges while retaining their original steepness. Deep dimples in valleys will be

Valleys filled in—how much depends on settings.

Filter This filter allows you to adjust groups of like elevations globally. In other words, terrain heights are divided
into discretely modifiable groups, from lowest elevation to highest elevation.

Thermal This is a very aggressive eroding filter. You can rapidly remove materials from sloped areas of your terrain

Erosion with this. The official docs say this uses a “thermal erosion” algorithm.

Hydraulic This is a very weak eroding filter. The official docs say this uses a “hydraulic erosion” algorithm.

Erosion

Blend This filter allows you to combine two existing operations via a set of mathematical operations, blending

them together. We will look at an example of this shortly.

65

Part 1

fBm Fractal Tips:

* If your height range

js large (say 350+),

you will tend to have

Jagged hills, regardless

of other settings.

* With a default height
range (300), Very

High Detail will tend
to create knife-edged
hills, even for low Hill

Frequencies (8).

66

Engine Overview

How Operations Are Applied

Operations are applied to the terrain in the order they appear in the list, top

to bottom. This means that if you apply two generators in a row, the second

generator’s results are the only ones that will be seen. More interestingly, you

can apply filters in different orders for different results. The best way to learn

about these operations Is to experiment.

Operations’ Settings

I’ll give a quick rundown of the various operations’ settings and then set you

loose.

General

¢ Min Terrain Height (0..500). Defines the lowest possible point in the map.

Tools and generators will not be allowed to create terrain elevations lower

than this.

¢ Height Range (5..500). Defines the maximum difference between min
height and max height. Therefore, max height = = min height + range.

¢ Water Level. A global value used as input to subsequent filters. It does not

place water.

* Center on Camera. Sets the map origin to the current camera location.

fBm Fractal

e¢ Hill Frequency (1..24). Indirectly determines number of hills. Higher val-
ues create more hills.

¢ Roughness (0.0..1.0). Determines roundness of hills. Lower values tend

to create more rounded hills, while higher values create taller and more

pointy hills, i.e., steeper slopes.

¢ Detail (Very Low..Very High). In terms of visual results, higher values pro-

duce more jagged peaks (knife edges).

e Random Seed. Seed that feeds into random portion of generator. Using

the same value for subsequent generations produces the same sequence of
numbers.

e New Seed. Creates a new seed.

Rigid MultiFractal

e Hill Frequency (1..24). Indirectly determines number of hills. Higher val-
ues create more hills.

e Roughness (0.0..1.0). Determines roundness of hills. Lower values tend

to create more rounded hills, while higher values create taller and more

pointy hills, i.e, steeper slopes.

Torque Tools

Detail (Very Low..Very High). In terms of visual results, higher values pro-

duce more jagged peaks (knife edges).

Random Seed. Seed that feeds into random portion of generator. Using

the same value for subsequent generations produces the same sequence of

numbers.

New Seed. Creates a new seed.

Canyon Fractal

Canyon Frequency (4..10). Number of canyons to produce.

Chaos (0.0..1.0). A value of zero will produce very artificial-looking and

straight canyons. A value of one will produce squirrelly features, almost

unrecognizable as canyons.

Random Seed. Seed that feeds into random portion of generator. Using
the same value for subsequent generations produces the same sequence of

numbers.

New Seed. Creates a new seed.

Sinus

As mentioned before, the Sinus gen-

erator builds the terrain using a com-

bination of sinusoidal values and

noise. If you want to see the under-

lying structure, set the seed to 0.

Now, poking around with the control

Scale (on..off). Although the scale implies there are ranges of values for
each control point, values are either on or off. Dragging a control point to
the bottom turns it off. Any other vertical position is on.

Random Seed. Seed that feeds into random portion of generator. Using
the same value for subsequent generations produces the same sequence of

numbers. :

New Seed. Creates a new seed.

Control Points. Controls number of points on scale. Type values into this

field. More contro] points mean more detail, i.e., higher levels of subdivi-
sion and iteration.

points will produce something that

looks like Figure 3.42.

Now set the number of control points to 3. Notice in Figure 3.43 that the

overall structure is still recognizable.

Chapter 3

Figure 3.42.

Sinus generator with seven

control points. :

67

Part Il Engine Overview

Figure 3.43.

Sinus generator with three

control points and various

point scales.

Turbulence

¢ Turbulence Factor (0..1.0). Determines strength of action. Lower values

mean less displacement and less variation in height. Higher values mean
vigorous swirling and modifications to height.

¢ Radius of Effect (1..40). Determines filter size. 1 equals a 3 x3 filter, 2

equals a4 4 filter, etc., up to a 42 x 42 filter.

Smoothing

e Iterations (0..40). Determines number of smoothing passes to run.

e Aggressiveness (0.0..1.0). A relative factor, determining how much mate-
rial to remove.

Smooth Water

¢ Iterations (0..40). Determines number of smoothing passes to run.

e Aggressiveness (0.0..1.0). A relative factor, determining how much mate-
rial to remove.

Smooth Ridges/Valleys

e Iterations (0..40). Determines number of smoothing passes to run.

e Aggressiveness (0.0..1.0). A relative factor, determining how much mate-

rial to remove.

68

Torque Tools Chapter 3

Filter

¢ Scale. Each control point corresponds to a specific height (see below for

calculation). Subsequent applications change these values.

¢ Control Points. Determines now many elevation bands there are.

You can make significant and rapid changes to your terrain with this filter.

Understanding how this works can be kind of tricky. At first, you might think

that the ranges will be based on the Min Terrain Height and Height Range set

in the General settings. This may or may not be true. If your current terrain

extends to the lowest and highest points, then, yes. However, let’s say your

Min Terrain Height is set to 0, but your lowest elevation is 100. Also, Height

Range is set to 200, but your highest elevation is only 200 (i.e., half the range).

Then, the elevation bands are determined as follows:

e Lowest elevation: 100 world units

e Highest elevation: 200 world units

¢ Control points: 5

e Width of each elevation band: (200 - 100}/5 == 20 world units

¢ Resultant elevation bands (left-to-right in scale):

Control Point 1 | Control Point 2 | Control Point 3 | Control Point 4 | Control Point 5

100..119 meters | 120,.139 meters | 140..159 meters | 160..179 meters | 180..200 meters

Moving a control point is like grabbing al! elevations in that band and

raising or lowering them by a relative amount. Additionally, there is a push-

pull relationship between bands of elevation; that is, by modifying one band,

you also (slightly) modify all other elevation bands. Figure 3.44 shows some

sample changes so you can judge for yourself. This tool rapidly changes the

face of your terrain, so caution is the word.

Please note that, by default, the scale comes up looking like Figure 3.44a

(only it has seven control points). If left like this, no changes will be made.

In Figure 3.44b, we raise the low elevation band as much as possible.

Remembering that lighter values are higher elevation, notice that some pre-

viously dark regions are now very light. Also, notice that, overall, the total

elevation of the map seems to have been lowered.

In Figure 3.44c, we lower the high elevation band as much as possible. Lo

and behold, previously high areas are now completely dark, but what else has

happened? The rest of the map seems to have raised.

In Figure 3.44d, we’ve lowered all bands except for the middle band. As

can be easily seen, we've basically said, “make the middle band the highest

range.”

69

Part Il

Figure 3.44.

Sample changes using

control points.

¢ For multiple

iterations, if a slope falls

below the Min Erosion

Slope, erosion no

¢ The Material

Loss value is a bit

misleading. A 100%

loss does not mean,

“set this value to lowest

height.” Instead it

means something like,

“set this value to lowest

nearby height.”

° This is a very

vigorous filter, quickly

removing large

quantities of material.
70

Thermal Erosion Tips:

longer affects that area.

Engine Overview

Thermal Erosion

¢ Iterations (0..50). Determines number of smoothing passes to run.

¢ Min Erosion Slope (0.0..89.0 degrees). Defines a cutoff slope value. What

this is saying is, do not apply this erosion to slopes with a current value

lower than that set here; i.e, if a slope has a 15 degree inclination and this

value is set to 45, no changes will be made to that part of the map.

¢ Material Loss (0..100). The relative percentage of material that should be

removed per pass.

Hydraulic Erosion

e Scale. No effect.

© Iterations (0..50). Determines number of erosion passes to run.

¢ Control Points. No effect.

Hydraulic Erosion Tips:

e This is one of those cases where having access to the code shortens research

drastically. The scale (filter) is passed in to the erosion method but not used. So,

whatever changes you make to it are going to be ignored. Since contro! points

are part of the same mechanism, you can ignore these, too. The only thing you

need to modify is Iterations.

e This sweet little filter fills one duty: erode the channels, or low points, between

steep hills. It erodes wide flat basins, too, but the effects are not as noticeable.

You've got to admire the person who coded this. To write an algorithm that

consistently targets a specific terrain feature for erosion? Brilliant!

|

Torque Tools Chapter 3

Blend

The parameters to this filter modify the blending equation above the Apply

button. Easy as pie. Just remember that Source A is always the operation

prior to this blend. (Yes, it can be a blend of a blend of a ... well, you get the

idea) Figure 3.45 shows the recreation of a nice terraformer sample from the

Tribes 2 days. It nicely demonstrates the power of the Blend filter.

Figure 3.45.

The Blend filter.

 [Ante ns ee farrees renee) Peery)

Step 1: General Step 3: fBm fractal

Min Height: 20

Height Range: 200

Water Level: 0

Hill Frequency: 24

Roughness: 0.000

Detail: Very High

Step 2: Rigid Multifractal

Hill Frequency: 1

Roughness: 0.000

Detail: Very Low

Seed: 2080079341
Seed: 1588197333

Step 4: Blend

Factor: 0.358

Source B: 1

Operation: Max

Loading a Bitmap

I have purposely deferred a discussion of loading your own bitmaps until the

end. Of all the questions I see asked over and over in the forums, one of the

most repeated is, “How do 1 load a bitmap as my terrain?” As you would imag-

ine, doing this is relatively simple. Once you have the PNG file you wish to use

as your terrain bitmap, simply place it anywhere in the current mod directory

(gpgt\data\heightFields, for example). Now, in the Terraformer, select the bit-

map operation and choose the newly placed bitmap as the operation’sy

source file. Click Apply, and you’re done. \

Although “loading a

bitmap” seems to imply

a BMP file, you must

actually use PNG

71

Part I] Engine Overview

Loading a Terrain File

Similar to loading a bitmap is the operation to load a previously created ter-

rain file. When you select this operation, the engine will pop up a dialog from

which you may select any currently available terrains.

Be warned that this operation will completely replace your current ter-

rain. Also, if you are missing textures that are used in the to-be-loaded terrain

(or the textures are in a new location), your terrain painting may start off

If you have not yet white. To resolve this problem, please read the section “Fixing Broken Terrain

followed the steps in Paths” at the end of Section 3.12, “Terrain Texture Painter.”
Section 14.4, “Setting

Up Our Workspace,” __
please do so before , 3.10.5 Maze Runner Lesson #1 (90 Percent Step)

doing Lesson #1. Terrain for Our Game
Here is the first of several lessons in which we’ll apply the massive

amount of knowledge we’re gaining in a practical situation, building our

own simple game step by step. In this first quick lesson, we’ll create a terrain

for our game to be played out on. Follow the simple steps in this section to

get started.

 Copy Required Files
Figure 3.46.

From the accompanying disk, please copy the “\MazeRunner\Lesson_001\

heightFields” directory into “\MazeRunner\prototype\data”. a. Terrain preview.

Generate New Terrain

To generate the cauldron for our game terrain, do the following (see Figure

3.46).

Quit the Lesson Kit and start up the Maze Runner prototype.

Start the Maze Runner mission.

(Mouse Brush) = 69 avg: 258.829

1.

2.

3. Start the Terraformer.

4. Use the Bitmap operation to generate a terrain using the file “\MazeRun-

_ D. Terraformer settings. ner\prototype\data\heightFields\mazerunner.png”.

After applying the generator, the terrain should be shaped like a cauldron.

Save the mission.

Adjust Spawn Point

Now we have a simple terrain. You might also want to use the Inspector to

remove all but one spawn point and to position it at “O 0 100” so we don’t

have such a long way to fall when we spawn into the mission again. Now,

don’t forget to save your changes.
Peller ert eS ee Al See 3
FPO ee She on ea eg oe dns

72

Torque Tools

And with that, we have taken the first small step towards making our little

Maze Runner game!

3.11 Terrain Texture Editor

3.11.1 Starting the Terrain Texture Editor
1. Start the World Editor by pressing F11.

2. Start the Terrain Texture Editor by pressing F8.

3.11.2 The Terrain Texture Editor Preview W/indow

After the Terraformer, the Terrain Texture Editor is probably the second most

complicated tool in the World Editor tool kit. Again, we’re faced with an array

of operations that can be performed, based on various factors and settings.

When all is said and done, this tool’s main goal is to allow us to place textures

on our terrain via selection algorithms and calculations. The end result of said

placement can be a very natural- or unnatural-looking landscape. Like the

Terraformer, we have the preview window, operations tree, and settings win-

dow (see Figure 3.47). In addition, we have a textures list, snuggled between

the settings window and the operations tree.

Chapter 3

Figure 3.47.

Terrain Texture Editor

screen.

73

Part II

Figure 3.48.

Figure 3.49.

Figure 3.50.

74

Engine Overview

3.11.3 The Texture Editor Textures List (Loading
Textures) r Before we can start texturing our terrain,

soatiater ane titeteeteh gg we need to decide which textures will

pardetbterransigravslondipstchy pg be part of our palette. To load a terrain,

heneiinieineabiasins mn simply click the Add Material... button
aneinterraneincorenescorctestee and select a terrain from the dialog that

comes up (Figure 3.48).

The Terrain Texture Editor places

our textures in layers. The first (top-

most) texture in the texture list is the

base layer. This is the texture that is vis-

ible if no other textures get applied to

a point on the terrain. In this case, we

have selected the grass texture as our

base texture (Figure 3.49).

Subsequently added materials

are always placed at the end of the list.

These textures are applied based on an

algorithm and settings (or placement

operations}. See Figure 3.50.

In the case that two textures

. (besides the base texture) are applied to

the same pixel on the terrain, they are

blended.

3.11.4 Terrain Texture Editor Operations

Fractal Distortion (Base Filter)

Every texture gets a base filter called Fractal Distortion, the purpose of which

is to provide randomness to the way the textures are placed. The interface

is very similar to the Terraformer’s fBm generator. The major difference is

the scale interface. The math behind the filter and the interface controls are

somewhat complicated to describe. Honestly, the easiest way to understand

what this filter does is to simply play around with it a bit and observe what

happens with various settings.

Torque Tools

Place by Fractal

The Place by Fractal filter is also complex to describe, and in my opinion, not

incredibly important for your day-to-day game-development needs. Here again,

if you’re interested in learning about this filter, the best way to understand it is

to experiment, testing different settings and values, and noting their effects.

Place by Height

This filter has a simple purpose. It places textures at certain delineated eleva-

tion bands and blends them based on the vertical setting for that band. I'll

show the result of this in Figure 3.51.

Place by Slope

As with the Place by Height filter, this filter is relatively straightforward. The

left side of the scale represents less steep terrain and the right side represents

more steep terrain. Again, the vertical scale is the blending factor.

Place by Water Level

This last filter allows us to place a texture at or below the water level we set

in our Terraformer. This is useful if you are building an island or have a large

lake, but I suggest avoiding it otherwise. Instead, for smaller bodies of water,

you can hand paint using the Texture Painter, which we’ll be talking about in

Section 3.12.

Because it is said that a picture is worth a thousand words, Figure 3.51

includes some sample pictures of the Terrain Texture Editor in use.

Chapter 3

Operation: Fractal Distortion

Fractal Distortion Settings:

Hill Frequency: 20

Roughness: 0.0

Random Seed: 801422093

Control Points: 7

Material: Grass

 Base layer of grass only.

Figure 3.51.

Samples of Terrain Texture

Editor.

75

Part Il Engine Overview

Figure 3.51 (continued).

76

—,

Operation: Place By Fractal

Fractal Mask Settings:

Hill Frequency: 16

Roughness: 0.0

Random Seed: 821699541

Control Points: 7

Material: detail1

Grass base with detail1 applied by height.

Notice height setting set to place only at highest

elevation band.

Operation: Place By Height

Height Mask Settings:

Control Points: 6

Use Fractal Distortion: true

Materials: Grass, detail1

Grass base with detail1 applied by slope. Notice
slope setting set to place only on least steep

(flattest) areas.
Operation: Place By Slope

Slope Mask Settings:

Control Points: 7

Use Fractal Distortion: true

Materials: Grass, detail1

Torque Tools Chapter 3

Operation: Place By Height Figure 3.51 (continued).

Height Mask Settings:

Control Points: 6

Use Fractal Distortion: false

Materials: Grass, detaill, patchy

Grass base with detail1 and patchy set to apply
at same elevation (by height). Notice blending of

detail1 and patchy.
3.12 Terrain Texture Painter (Terrain Painter]

3.12.1 Starting the Terrain Texture Painter
1. Start the World Editor by pressing F11.

2. Select Terrain Texture Painter from the Window menu.

Figure 3.52.

Terrain Texture Painter

screen.

77

Part Il

Figure 3.53.

“Load File...” dialog box.

78

Engine Overview

3.12.2 Examining the Terrain Painter

The last of the tools we will examine in this section is the Terrain Painter.

Among all the tools, this is probably the most straightforward. If you have

successfully loaded the Terrain Painter, you will see something like the image

in Figure 3.52.-If you have used any tools like Worldcraft, Wally, or any of a

number of other content-creation tools, you will be familiar with the concept

of a palette, but just in case, I will describe it.

The Terrain Painter Palette

Currently, the palette is limited to six textures. Also, the palette texture “spots”

must be loaded in counterclockwise

order. In other words, if you tried

clicking on the Add... button in the

upper right corner right now, noth-

ing would happen. Try clicking the

Add... button in the middle left.

Load the patchy.png texture.

When you click either an Add...

button or a Change... button, the

Load File... dialog pops up (see Fig-

ure 3.53). The tool will automatically

find files in either of the following two formats:

1. Portable Network Graphics (*.png)

2. JPEG (*.jpg)

I strongly suggest using PNG files. Also, you should adhere to strict rules

regarding the dimensions and color content of your graphics files.

Dimension Required: 256 x 256 pixels

DPI or PPI Suggested: 72

Pixel Depth/Colors Suggested: 24/16 million

Alpha Layer Suggested: none

On the right side of the screen, you should see a window that looks simi-

lar to Figure 3.54. In this image, there are two of six allowed textures enabled.

The purpose of this window is to act as a sort of painter’s palette for textures.

Simply by dabbing your cursor on (clicking on) a loaded texture, you can use

that texture to paint the terrain with the now familiar brush. As with the Ter-

rain Editor, you can change the shape, size, and hardness of the brush. In this

case, the hardness will affect blending. A softer brush provides a softer stroke,

Torque Tools Chapter 3

therefore less of the new texture is applied per stroke, with more of the under-

lying texture showing through. Give it a try. Click on the “patchy” texture and

paint some lines, swirls, whatever. Cool, eh?

Figure 3.54.

The palette.

Fixing Broken Terrain Paths (All White Terrain]

Sometimes, we will find it necessary to move our terrain files (*.ter) and/or

our terrain textures. As a result, the next time we relight our terrains, they may

render without textures. TGE embeds relative texture paths within the body of

the terrain file, so when we move the terrain file, we break these paths.

Fixing this problem is relatively painless. Simply follow these steps.

1. Load the mission with the broken terrain. The terrain will be all white (see

Figure 3.55).

2. Open the Terrain Painter tool. If you examine the painter palette, you will

see that all of the texture slots are blank, even though they do have the
texture name listed (see Figure 3.56).

3. One by one, click on the Change... buttons and relocate the matching

texture (as is listed by the blank palette chip) using the Texture Selection

dialog (see Figure 3.57).

4. Finally, save the terrain, and your terrain file will be fixed!

Figure 3.55. Figure 3.56. Figure 3.57.

Broken terrain; shows up as white. Blank palette texture slot. Texture Selection dialog.

bump0.png

bump png

defaut.png

grass jpg

patchy jpg
sand jpg

79

Part Il

80

Engine Overview

3.13 World Editor Quick Tips

3.13.1 Manipulator (F 11+ F2) Tips

Translating rotated objects. To move a rotated object, press and hold
SHIFT before selecting the object’s gizmo. This will force the gizmo to
align to the world axes, thus making it easier to move the object about.

Quick scaling. Select the object to be scaled. Press and hold CTRL +
ALT, then hover the mouse over the side to be scaled. A blue hash will
appear, Clicking on this and moving the mouse scales in the selected
dimension.

Quick move. Select an object with the mouse and then, being sure the
gizmo is not highlighted, click on the object’s bounding box and hold the
left mouse button. Now you can move the object about the world plane in

x and y directions.

Better placement (snap-to). Turn on the editor’s snap-to by opening the

console (~) and typing “snapToggle(};”. Now, open the WorldEditor Set-

tings dialog (under the Edit menu) and set the Move Scale to the value you
want snaps to happen on. While moving objects with the gizmo, move-

ments will snap to this increment.

3.13.2 Inspector (F11 + F3) Tips

Staying organized. Make sure to add SimGroups before placing objects,

and then be sure to place objects in them when populating the mission.

Locking objects. To make editing simpler and safer, objects can be locked.

A locked object cannot be translated, rotated, or scaled using the mouse.
However, changes can still be applied via the Inspector pane. To lock
an object, simply select the object in the Inspector and add a dynamic

field named locked. If locked is set to true, the object will be mouse-

modification immune. To unlock the object, delete the variable or set it to

faise.

3.13.3 Creator (F11 + F4) Tips
New Interiors are black (relighting the scene). In versions prior to TGE
1.4, interiors started out black and needed to be “relit” to get their tex-

tures. To get the textures to render and to get the shadow for this DIF
baked into the terrain, you need to relight the scene. Simply type ALT +L.

In version 1.4 and beyond, all newly placed interiors will be draft-lit. This

means that the interior will be lit, but no self-shadowing or terrain shad-
owing will be done. To see the final lighting results, you will still need to
relight the scene. Draft lighting was added to save time and give better
feedback while editing.

Torque Tools

3.13.4 Area Editor (F11 + F5) Tips
¢ Quick camera/player movement. To quickly move the camera/player to a

_ point on the map, open the Area Editor and click on the preview map. The

camera/player wil! be moved to that point on the map.

3.13.5 Terraformer (F11 + F7) Tips
¢ Setting map to zero elevation (perfectly flat). To create a map at zero ele-

vation, open the Terraformer, add the operation Terrain File, do not select

a terrain file, and apply the operation. Because no terrain file was selected,

the loader will flatten the terrain to zero elevation.

¢ Setting map to non-zero elevation (perfectly flat). To create a flat map at
a set elevation, open the Terraformer, then:

* remove all current operations;

¢ add a Sinus operation;

* click on General and set Min Terrain Height to desired height;

* type 0 in Height Range (clicking roller buttons does not allow this, only

typing);
* click on previously added Sinus operation; and

* click Apply.

3.13.6 Terrain Painter (Windows > Texture

Painter) Tips
¢ Increasing texture count. Search the GarageGames website for a resource

titled “8 terrain textures instead of 6” that provides an easy solution for

increasing the number of textures the Terrain Painter palette can hold.

3.13.7 General Editing Tips
¢ Better placement (use the grid). Use the grid like a ruler when placing

objects. Don’t forget that the grid size can be adjusted in the World Editor
Settings dialog. Using this feature in addition to snap-to can simplify place-

ment greatly.

¢ Reduce visual clutter while editing. When the number of objects in a

mission is significant, too many labels (centroid + object ID) may be vis-

ible. To alleviate this, either disable “render object text” (in the World Edi-

tor Settings dialog), or reduce the “visible distance” (a field in the Sky

object).

e Exact scaling. When you want to scale an object by an exact factor, use

the min/max scale factor settings found in the World Editor Settings dialog.
By simply setting these factors to the same number, then applying a scale

operation, the object will scale to the exact value.

Chapter 3

81

Part Il

82

Engine Overview

¢ Stop selecting far objects accidentally. Along with visual clutter, some-
times it occurs that far objects get selected by mouse movements; i.e., while
attempting to select a near object, a far object is alternately or additionally

selected. Simply reduce the “project distance” for the pointer (World Editor

Settings dialog), or reduce the “visible distance” (a field in Sky object).

e Stop objects falling through terrain during placement. To keep objects

from falling through the terrain while you place them, open the World Edi-

tor Settings dialog and uncheck “Planar movement”, then uncheck “objects
use box center”. Now sliding objects around with the mouse will be less
likely to cause them to fall through the terrain.

e Speed up scene relight. When editing, we don’t necessarily care if the

scene lighting is perfect. To speed up scene relights (ALT +L), open the
console (~) and type

Spref::sceneLighting: :terrainGenerateLevel=0;

Now relights will be done with the lowest precision. In general, this is still
pretty good, and it may be all right to leave it here. Note that the highest

value is 4, but this setting can take 50 or more times the length of time it
takes to relight with a setting of 0.

3.14 The GUI Editor

3.14.1 Starting the GUI Editor

1. Select the GUI you wish to start editing in:

* Main Menu (for now start here);

¢« In-Game (playGui); or

* other... anywhere else in your game.

2. Start the GUI Editor by pressing F10.

3.14.2 Examining the GUI Editor

If you have just started the GPGT Lesson Kit and then pressed F110, you will

see pretty much what is shown in Figure 3.58 except the Content Editor will

contain the Main Menu.

The GUI Editor can get confusing quickly if you don’t know what you’re

doing, or if you don’t pay attention to what you’ve done. As Figure 3.58

shows, there are four areas to the GUI Editor, In clockwise order from the top

left, they are as follows.

1. Content Editor. This is the place where you will be mouse-interacting with
your GUI(s).

Torque Tools Chapter 3

Figure 3.58.

The GUI Editor screen.

Content Tree

2. Content Tree. This will display the hierarchical (parent-child) relationship

of the controls in the current GUI.

3. GUI Inspector. This inspector is similar in function to the World Editor

Inspector in that it is used to display all the data about a chosen object.

In this case, the object is a selected GUI control (a window, button, slider,

etc.).

4. Toolbar (at top, not labeled). The toolbar provides several major functions,

which will be described shortly.

This all may seem simple enough, but there are a few things to beware of and

a few things you should know before you start.

3.14.3 Things to Beware!
* Hosing up is so easy to do. Please understand that it is very easy to com-

pletely hose up an interface if you are not cautious. That said, it is an excel-

lent idea to make frequent backups of your project.

e I can’t see jack... The minimum resolution for editing GUIs is 800 x 600,

but if at all possible, I suggest editing at 1024 768. You will find that
the Content Tree and Inspector are much easier to use and read at this

resolution.

83

Part ||

84

Engine Overview

e I’m stuck! It is easy to get stuck while editing GUIs. That is, you may find

yourself in a situation in which you are unable to exit the GUI Editor. This
will happen less and less as you become more familiar with the tool and its

operation. If you do get stuck, you can kill the application.

¢ Duplicate GUIs (backups). If you edit like I do, you may be accustomed

to creating backup copies of your files as you work. You may continue to

do this, but you should not leave them in the current game directory hier-
archy. If you do, TGE will find them. Subsequently, when you go to save,

this will confuse the save dialog when it tries to find the best place to save
the GUI you are editing.

¢ Start and stop the editor from the same parent GUI. The most common

mistake I made when | started playing around with the GUI Editor was
starting the editor and then later trying to exit after having switched to a
different GUI. For example, try the following.

1. Start the GPGT Lesson Kit and press F10.

. ma on MainMenuGui and switch to playGui.

. Try to exit by pressing F10.

. Huh? Now the mouse is locked, and the screen didn’t change. Hmmm...

. Press F10 (should be able to move mouse now).

. Bi on the button with playGui displayed.

. Switch back to MainMenuGui.

. Try to exit again by pressing F10.

OS
O
N

D
H

BP

WwW

DH

. Voila! Back to the Main menu.

So what happened there? Well, F10 gets us in and out of the editor, but if we

have changed the current menu, it exits into the new editor in order for us to

test it. The reason the screen seemed to lock up was because the playGui was

not properly activated. The important thing to remember is this: when you

are finished editing GUIs, switch back to the GUI you started from, and then

exit the GUI Editor.

3.14.4 GUI Editor Basics

We will review the user-interface devices. Then, we will discuss the mechan-

ics of control manipulation, GUI navigation, how to add new controls to an

existing GUI, and how to create a new GUI.

GUI Editor Devices

As with the World Editor, there are graphic controls that provide you with

feedback while editing. There are far fewer of these devices in the GUI Editor,

but it is important to give them a quick review (see Table 3.18).

Torque Tools Chapter 3

Description Table 3.18.

When you have a single control GUI Editor graphic
selected, eight black squares will controls.
show up. The little squares are
handles that allow you to resize
the control.

Single Select

Similar to the single select is
the multi-select. When you have
multiple objects selected, each

object will have eight squares
along the perimeter of the object.

The difference is that when the
squares are white, it means that

you cannot resize. Only dragging
is allowed.

Multi-Select

When you have a single control

selected and are editing fields in
the Inspector, the handles turn

gray. If they have a white outline,
it means APPLY will take effect if

clicked.

APPLY OK

When you have multiple controls

selected and are editing fields
in the Inspector, the handles on
all selected controls turn gray.
If they have a black outline, it
means APPLY will not take effect

if clicked.

Think of the black outline as

a warning. Sometimes it isn’t
obvious when objects get
crowded together.

APPLY OK

The final device is the Add Parent

box. Hierarchy in your GUI is an

important concept. In order to
create hierarchy (add controls to
existing controls vs. to the top

parent), you must select an Add
Parent. The Add Parent box gives
feedback, showing which control
is the current Add Parent.

Add Parent 85

Part Il Engine Overview

3.14.5 Control Manipulation

Now that we’ve covered the basic GUI Editor devices, let’s talk about how we

manipulate controls; i.e., how do we resize, move, etc. See Tables 3.19, 3.20

and 3.21. Unlike the World Editor, the GUI Editor has no menu, so you have

to use hot keys to cut, copy, and paste. Naturally, these hot keys are the same

in both editors.

Table 3.19. . noone By an object(s) in either the Control Editor or the Content Tree. (Multi-

Moving and resizing : S| select only works in the Control Editor.)
{mouse and keyboard}. AND

A a handle and drag.

mouse Gj an object(s) in either the Control Editor or the Content Tree. (Multi-
9 select only works in Control Editor.)

AND

A a selected object(s) (not on a handle) and drag.

Keyboard Bi an object(s) in either the Control Editor or the Content Tree. (Multi-
9 select only works in Control Editor.)

AND

(Up, Down, Left, or Right) Arrow Key moves one pixel in selected

direction.

OR

SHIFT + (Up, Down, Left, or Right) Arrow Key moves ten pixels in
selected direction.

Table 3.20. Align Left
. _. (CTRL + L)

Moving and resizing Align all

"| Layout menu).

86

selected controls’

left edges to left
edge of leftmost-
selected control.

Torque Tools Chapter 3

Align Right

(CTRL + R)
Align all

selected controls’
right edges

to right edge

of rightmost-
selected control.

| | | rt |

Align Top
(CTRL + T)

Align all selected

controls’ top
edges to top

edge of topmost-
selected control.

Align Bottom
(CTRL + B)

Align all selected
controls’

bottom edges

to bottom edge

of bottommost-
selected control.

After

 Center

Horizontally

Centers all
selected controls

horizontally

within rectangle

defined by edges
of outermost-

selected controls.

After

Table 3.20 (continued).

87

Part II Engine Overview

Table 3.20 (continued).

88

Space
Horizontally
Evenly spaces

controls
horizontally

within bounds

Before

of leftmost and
rightmost edges.

After

Space
Vertically

Evenly spaces
controls vertically

within bounds
of topmost and
bottommost

edges.

After

Bring to Front

Raises control so
that it displays

on top (in front)
of any siblings.

Before

After

Send to Back
Lowers control

so that it displays
below (behind)
any siblings.

Before After

Torque Tools Chapter 3

Cut CTRL + X | Single or multiple controls OK.

Copy CTRL +C | Single or multiple controls OK.

Paste CTRL + V | Please note that, if controls are selected,
(to current Add Parent) the paste will happen (to currently selected

Add Parent), but you will not see the pasted
‘ objects if they are not normally visible unless selected.

Add Parents

I’ve mentioned the term Add Parent a few times now, but to be absolutely

clear, I’m going to discuss it one more time. In order to add a new control as

a child of another control (parent), you must have selected the parent control

by right-clicking it. If properly done, the control that you wish to be the parent

will get a yellow and a blue outline (the yellow might look green). Now, any

added controls will automatically become children of the Add Parent control.

There is no mouse-only method of moving a child into a parent. You’ll either

have to:

1. cut, select Add Parent, and paste, or

2. edit the GUI file by hand later.

GUI Navigation

In order to edit an existing GUI, we need to know how to get to it; 1.e., we

need to know how to load a GUI into our Content Editor. If you have been fol-

lowing this guide in order, you have already done this. However, even if you

have, there are a few ways to do it.

e If you want to edit the Main menu, simply start the GPGT Lesson Kit and

open the GUI Editor.

e If you want to edit the playGui, simply start the GPGT Lesson Kit, load the

“World Editor Training” mission, and open the GUI Editor.

What, however, do you do if you want to edit a GUI that isn’t easy to get to

work with the Load Mission dialog, for example? Let’s say we want to add

a label to the existing Create New GUI dialog. How would we get to it if we

started editing in the Main menu? Assuming that you are at the Main menu:

¢ open the GUI Editor (F10), and

° Ei NewGuiDialog from the middle pull-down (above Content Editor).

| New Control NewGuiDialog - 1112 | 640 x 480 !

At this point, the Create new GU] dialog should be visible in the Content Edi-

tor (see Figure 3.59). That is basically it. Just select whatever GUI you need

to edit, and there you are.

Table 3.21.

Cutting, copying, and

pasting.

Figure 3.59.

Create New GUI dialog.

Part

Figure 3.60.

Content Tree.

GHB) 1224: MainMenuGul - QuiChunkedBitmapt

fi} 1225: - GuiditmapButionctr
Sf} 1220: - OuiBitmapButtenCtil

By 1231: - auiBitmapButtenctrt

Ry 1293: - GuiBitmapButtoncel

i 1235: - GuiditmapAuttenctn

fi) 1237: - GuibitmapButtenCt

GHB 1230: - QuiditmapButtenCtr

Figure 3.61.

New button.

Engine Overview

Before we move on, get yourself back to the MainMenuGui and close the

GUI Editor (F10).

3.14.6 Adding Controls to an Existing GUI

Adding a new control to an existing GUI is very simple. That is, adding the

graphical portion is simple. We’ll cover hooking scripts to your new controls

a little later. For now, do the following.

Start the GPGT Lesson Kit.

Open the GUI Editor (F10).

-Expand the Content Tree by clicking on the [+].

A on MainMenuGui (top of tree) to select it as your Add Parent. Your Con-

tent Tree will look something like Figure 3.60. Also note that the main win-

dow now has a yellow and a blue outline, meaning it is the Add Parent.

Ei on the New Control button and select GuiButtonCtrl from the pop-up

list.

A new button will appear in the upper corner of the Content Editor. Drag it

so that it is on the right side of your Quit button (see Figure 3.61).

In the Inspector, give your new button the name “My First Button.” Ay on

APPLY and verify that the button now appears in the Content Tree and that

it has a name (Figure 3.62).

Now, in the Inspector, make the command equal to “quit();” and Aj on

APPLY again (see Figure 3.63).

Now, to save your work select File > Save GUI, select MainMenuGui.gui,

then A; on the Save button in the dialog (see Figure 3.64).

Figure 3.62.

“My First Button.”

Figure 3.63. Figure 3.64.

Quit command. Saving the GUI.

‘Appl Name. [My First Bution

90

“foun wasnene "| | Command |quitd|

+ GuiditmapButtencul LessonSelector gui

. + OuiBitvmapButtenctt leadingGul.gui

2 + OulBltmapButtenCtal j :

+ QuiBlomapButenCtd | playGul.gui

+ QuibttmapButten Ch SampieGuis.gui

Torque Tools

At this point, your changes to the GUI are final. Let’s test it.

e Get out of the GUI Editor (F10).

e Exit the GPGT Lesson Kit.

e Restart the GPGT Lesson Kit.

¢ What happened? If you followed the instructions above, you placed spaces

in the name of your new button. This is a no-no. If you restarted with-

out deleting the DSO files (as instructed}, the old menu is now showing,
and the new button is not showing. If you deleted the DSO files and then
restarted, the splash screen hung when switching to the main menu. In
the former case, you can simply press the Quit button and keep reading.

In the latter case, open the console by pressing the tilde (~) key, and then

type quit; followed by ENTER.

All right, so we’ve killed the game, but we still have to fix our problem. To do

so, follow these steps.

1. Open the file “gpgt\client\Interfaces\mainMenu.gui”.

. Search for “new GuiButtonCtrl{My First Button) {”.

. Replace it with “new GuiButtonCtri(MyFirstButton) {”.

. Start the GPGT Lesson Kit.

. Click your new button, and the GPGT Lesson Kit quits. wn

Be
WwW

NH

If you are observant, at this point you have a big question. Namely, why

did the button (seem) to move from where you put it to somewhere else? That

is, we placed it near the Quit button, but then when we ran the app it, well,

... It moved! This brings us to the important discussion of horizSizing and

vertSizing.

horizSizing and vertSizing

In general, these settings define how a control wil) be resized or reposi-

tioned when the control’s parent container is resized. As a general rule, you

can assume that the root container (the Canvas) will have a starting size of

640 x 480, and it (and all of the controls it contains) will be resized/reposi-

tioned from this state.

AS any container is resized, all of its child controls are resized and/or

repositioned according to the horizSizing and vertSizing properties of each

control. If any of those controls are containers with children of their own, they

too will be resized and/or repositioned in the same fashion. This behavior

cascades down the parent-child tree of controls. This provides a basic layout

capability.

The basic settings for these two properties are: center, relative, left/top,

right/bottom, and width/height. Each is explained below.

Chapter 3

91

Part Il

Figure 3.65.

Creating a parent.

eae oa |

MyFirstGuil

92

[rag nce

Engine Overview

e Center. This setting will center the control in its container. Only the con-

trol’s position is altered—the control’s extent (width and height) remains

the same.

e Relative. When this setting is applied, the control in question will be
resized and repositioned to maintain the same size and position relative
to the parent container. For example, if the parent doubles in size, so will

this control; additionally, the space between the control and the parent’s

borders will double.

¢ Left/Top and Right/Bottom. These settings only affect position. Extent is
unaffected. Simply put, the change in size of the parent is applied to the

distance between the control and the specified edge of the screen. This

means that the control will maintain its distance from the opposite edge.

¢ Width/Height. These settings result in changes to the extent of the control
only. The difference in size of the containing control is applied directly to

the extents of the control itself.

3.14.7 Creating a New (Parent) GUI

Now, we’ll learn how to create a new GUI. I warn you in advance that there

is more to this topic than might seem apparent. For now, I’ll demonstrate the

mechanics of creating a new page. In later chapters, I’ll go into greater detail

on how the GUI system works.

Let’s create a new dialog box. The dialog will have a label and a single

button.

The Parent

e Start the GPGT Lesson Kit.

® Open the GUI Editor (F10).

*® Select File > New Gui.

In the dialog that comes up, rename the GUI to MyFirstGui (no spaces) and

A on Create (see Figure 3.65).

That’s it for creating the parent. Now let’s add some controls.

The Dialog

If you have not yet read through Section 3.14.6, “Adding Controls to an Exist-

ing GUI,” please stop and do so. If you have, then do the following.

e Add a new GuiWindowCtrl control and, using the Inspector, modify the

following parameters as indicated.

* Name: MyFirstWindow

* position: 200 100

* extent: 350 250

Torque Tools

e Select the MyFirstWindow control as the Add Parent.

e Add a new GuiTextCtr! control and using the Inspector modify the follow-

ing parameters as indicated.

¢ Name: MyFirstLabel

* position: 145 5

* extent: 60 20

* text: My First Gui (notice the spaces)

e Add a new GuiButtonCtrl control and, using the Inspector, modify the fol-

lowing parameters as indicated.

* Name: MySecondButton

* position: 150 100

* extent: 50 50

* command: Canvas.setContent (mainMenuGui) ;

* text: Cool

® Save this GUI under the name MyFirstGui.gui in the “gpgt/client/interfaces”
directory.

Now, quickly test your new GUI by pressing F10. Note that earlier I warned

you not to do this. In fact, it is OK to do so, but you must understand what

is happening. We’re not really trying to quit the editor. We want to temporar-

ily suspend it so we can test our GUI. It just so happens that this suspending

quits the GUI Editor if we press F10 while editing the same page we entered

the GUI Editor on. It can be confusing. Your new dialog should look like the

one in Figure 3.66.

The next step is hooking up our dialog so

we can load and unload it in the GPGT Lesson

Kit.

3.14.8 Loading New GUIs

Now that we’ve successfully created our first

dialog box, let’s make it available in the GPGT Lesson Kit. In other words, let’s

use it. If you have been following the guide in order, you have already created

a new button in the Main menu. Using what you have already learned, please

make the following changes to the button.

e Select the existing GuiButtonCtrl control named MyFirstButton and, using
the Inspector, modify the following parameters as indicated.

* command: Canvas.setContent (MyFirstGUI) ;

* text: Open Dialog

© Save the GUI.

Chapter 3

Figure 3.66.

Creating a dialog box.

93

Part II

94

Engine Overview

Let’s test it by pressing F10 to exit the GUI Editor.

e A on the relabeled button Open Dialog should start our new dialog GUI.

° Fi on the button Cool should return you to the Main menu.

Notice that I said should above. If you quit the GPGT Lesson Kit between

the sections “The Dialog” and “Loading New GUIs,” then when you ma on the

Open Dialog button, nothing will happen. Why? Because it didn’t get loaded.

In order for any GUI to be available, it needs to be loaded before you try to

wake it. This loading is done in various places. The organization of GUI load-

ing scripts is beyond the scope of this section, but for completeness, I’ll show

you how to get your new GUI loaded.

Open the file “egt\client\init.cs” and search for the following code.

// Load up the shell GUIs

exec (“. /interfaces/mainMenu/loader.cs”) ;

Modify the code so it looks like this:

// Load up the shell GUIs

exec (“./interfaces/mainMenu/loader.cs”);

exec (“./interfaces/MyFirstGUI.gui”) ;

Save the file. Restart the GPGT Lesson Kit. Now, you can switch back and

forth between the newly created dialog and the Main menu.

3.14.9 Summary

We started this chapter by learning that TGE provides two basic editors, the

World Editor for editing the game world, and the GUI Editor for editing inter-

faces. Next, we summarized the eight tools contained in the World Editor.

After the introduction, and for the bulk of the chapter, we worked our way

through the individual World Editor tools.

¢ The Manipulator. A full-screen editor made for tweaking the scene arrange-
ment.

¢ The Inspector. A partial-screen editor created for tweaking the properties

of existing objects in the scene.

e The Creator. A partial-screen editor with an object selection tree used to
create new objects.

e The Area Editor. A partial-screen editor used to adjust the mission bound-

aries, to mirror the terrain, and for quick navigation of the camera/player

position within a mission.

Torque Tools

e The Terrain Editor. A partial-screen editor using various brushes to directly
manipulate terrain geometry.

e The Terraformer. A partial-screen editor containing algorithmic base, gen-
erator, and filter elements used to create (or import) complex terrain geom-

etries.

¢ The Terrain Texture Editor. A partial-screen editor utilizing sophisticated
algorithmic generators and filters to paint the terrain with stunning detail.

e The Terrain Painter. A partial-screen editor utilizing a palette and brushes

for making modifications to generated terrain textures, and/or for the
wholesale editing of terrain textures by hand.

Having completed the long World Editor tools discussions, we ended the

chapter with a detailed walk-through discussing the use of the GUI Editor.

In this discussion, we learned about creating and saving new interfaces.

We learned about placing controls and modifying their dynamic scaling and

anchor behaviors. Finally, we made a simple interface to exercise and cement

our newfound knowledge.

At a few points along the way, we took the time to make use of TGE edi-

tors/tools to create content for the prototype of the game we will be complet-

ing at the end of this guide.

All in all, we accomplished quite a lot in this chapter. At this point, you

should already be able to open the kit, start the editors, and with some con-

fidence in your results, poke about and start to create the worlds in your

mind.

Chapter 3

95

Chapter 4

Introduction to TorqueScript

This chapter offers an introduction to the Torque Game Engine scripting

language, often referred to simply as TorqueScript. Besides introducing the

TorqueScript language itself, this chapter will provide a foundation to build

on when discussing other TGE topics.

Before starting, please understand that it is assumed you are familiar with

some basic programming concepts. You do not need to be a guru, but having

a basic familiarity with C/C++ and object-oriented programming principles

will greatly facilitate learning TorqueScript.

4.1 TorqueScript Concepts and Terminology

4.1.1 To Script or Not To Script?

A frequent question I’ve seen in the forums is, “Do | need to use scripts?” No,

you really don’t need to use the built-in scripting language if you don’t want

to, but I’m 99 percent sure that, once you do start to use TorqueScript, it will

be apparent that scripting in Torque is by far easier and more efficient than

coding and recompiling every change you wish to make.

Even though the engine is written in C++ and assembly language, most

of your game will be programmed in TorqueScript, denoted by files with the

* cs extension. The advantages of using a scripting language instead of cod-

ing everything in C++ are that your game does not have to be recompiled

every time you make a change; it’s a more-targeted, higher-level game lan-

guage than C++; and you don’t have to worry about memory management.

A popular misconception is that scripts are slow; this is not necessarily true.

TorqueScript is compiled into byte-code before being executed and is surpris-

ingly fast. While C++ code will always be faster, the flexibility of scripting is

superior for most gameplay-related functions.

Perhaps you doubt me? Or, maybe you aren’t familiar with scripting in

general. In either case, let’s talk about scripting, and I’ll see if I can set you on

the right course.

What Is Scripting?

What exactly is a scripting language? What can you do with scripts? And why

are they used so much in modern game development?

97

Part I

98

Engine Overview

Scripting languages are programming languages designed to enable script-

ing. Scripting is the act of using preexisting [engine] components to accom-

plish new tasks. In other words, we use a scripting language to access features

in the engine and then use those features to provide a game experience.

Generally, scripting languages are interpreted, not compiled (like C++

and other languages). This makes scripted tasks somewhat slower than com-

piled tasks, but we make this trade in order to gain flexibility and visibility, as

well as ease of use. Because scripting languages also allow you to modify your

program without having to recompile it, we are able to rapidly prototype and

repair code. This speeds development significantly.

Often, scripting languages allow you to write code without worrying

about nitty-gritty details like data types or memory management. This is both

a boon and a bane. It is a boon as it simplifies many programming tasks, but

a bane because it allows us to make mistakes that a strict compiled language

and its compiler would find.

Given the above, it should be easy to see why scripting languages are used

so heavily in modern games. However, if you are not convinced, consider

these possible uses for a scripting language.

¢ Prototyping. During the development of your game, you will often need
to test out ideas. New gameplay features might come up, or features in the
original design might not work as well as envisioned and will need to be
modified or replaced. To be efficient, you will need the ability to quickly

test all these ideas, so you can decide whether to keep or modify each of

them. Creating these quick tests is called prototyping. Scripts are great for

prototyping because they are so quick to code with, test, and modify. After

you prototype in script, performance-critical functionality can be ported

over to C++ for final inclusion in the game.

¢ Debugging. Scripts are great for debugging, too. Because scripts are easily

modified (on the fly), you can identify problems, address them, and retest

without having to recompile and, in some cases, without even having to
restart the game. Scripts can also be used to quickly create test units that

stress other pieces of code to identify otherwise hard-to-find problems.

* Game customization and tweaking. The look and feel of a game’s inter-

face and many of its gameplay mechanics normally go through tweaks and

revisions during the course of development. Thus, it is best to place most

code related to these areas in script. This helps to rapidly test different

looks and gameplay behaviors, as mentioned in the point on prototyping,

above. There is a side benefit to developing your game this way as well.

Having code related to your interface and gameplay in scripts allows end-

users to customize your game to their liking (but only to the extent you

choose to allow them when playing the official version of your game). Also,
these types of script changes are the basis of many game mods. Mods are

Introduction to TorqueScript

very popular in games like Unreal, Quake, and Tribes. Taking Tribes 2 as an
example, War 2002, Renegades, and Team Aerial Combat are all script-based

mods. From a coding perspective, mods can be very simple to implement

when working with games that incorporate flexible scripting languages and
use them for much of the game’s code. Implementing your game in such a
fashion can obviously be a big draw for potential players that are interested

in playing and/or creating mods. This allows user communities to breathe

new life into your game, extending its shelf life.

Writing non-performance-critical functionality. Really, any piece of

functionality that won’t have a big impact on performance can be coded in
script. Writing render pipelines in script isn’t a good idea, but writing code

to modify the behavior of an existing pipeline is perfectly feasible and quite

common.

Scripting makes sense in many more situations. The inclusion of scripting

languages is a powerful feature of modern game engines, and developers are

wise to leverage the advantages of scripting at every sensible opportunity.

4.1.2 Features We Need

If you accept that scripting is useful, what should you be looking for in a

scripting language? What functionality should it provide? At minimum, a

scripting language for use in a game should provide the following features.

Basic programming-language features. The scripting language should

provide all of the basic features common to modern programming lan-
guages, such as powerful variable types, basic operations (addition, sub-

traction, etc.), standard control statements (if-then-else, for, while,

etc.), and subprograms (functions, file inclusion).

Access to engine structures. This is a critical feature. For a game engine’s
scripting environment to be of use, it must provide some kind of interface

to manipulate the core engine functionality and structures. The scripting
system should allow access to the rendering, audio, physics, Al, and I/O

systems. It must also allow the creation and deletion of objects and the

definition of new functions.

Some other (very) nice features to have are the following.

Familiar and consistent syntax. Ideally, the syntax of a scripting language
is familiar, meaning it is similar to the syntax of a language many program-
mers are already familiar with, for example, C or C++.

Object-oriented functionality. Object-oriented programming has been a
revolution in the art and science of software engineering. Scripting lan-
guages that provide object-oriented functionality offer many benefits,

including the following.

Chapter 4

99

Part Il

100

Engine Overview

* Encapsulation. Provides a means of limiting access to code and data
(not directly supported in TorqueScript).

* Inheritance. Provides a means of creating new objects from the defini-
tions of existing engine objects and/or scripted objects.

* Polymorphism. Allows us to override the default behavior of derived
object code, whether the object is derived from engine objects or other

scripted objects.

¢ On-demand loading and scoping. Why have all the code in memory at

once when it can be loaded as needed? Besides saving memory, scripting
languages that allow the dynamic loading and unloading of pieces of code
also make it easy to override a program’s functionality on the fly.

¢ Means of speeding up scripted code. As noted above, scripted code is

not usually compiled—it is simply interpreted at run time. A feature that

many common scripting languages (Perl, Tcl, VBScript, Java) provide is the

ability to compile scripts into byte-code. This byte-code is then executed

on a virtual machine. The benefits of this are size and speed. Byte-code is

(normally) smaller than and executes faster than interpreted code.

4.2 What about TorqueScript?

Allright, enough generalities. What is Torque’s scripting language like? Torque-

Script is a strong and flexible language with syntax similar to C++. It pro-

vides all of the features listed above, including those on the “would be nice”

list. The remainder of this chapter is dedicated to script-only functionality.

Please note that all the pertinent functions both for scripting and for

exposing engine features to the console are covered in the “TorqueScript Quick

Reference” appendix.

4.2.1 The Console and Sample Scripts

In order to facilitate your learning experience, many sample scripts are

included with the GPGT Lesson Kit. These scripts are organized by chapter.

Furthermore, all labeled scripts (labeled in the text of this document) can be

run from the console simply by typing the supplied function name.

For example, the following sample script:

//bt99();

echo(“Torque Rocks”);

echo (1+ 1);

can be run by typing bt 99() ; into the console command line and then press-

ing ENTER.

Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Binding

Loading compiled
compiled
compiled
compiled
compiled
compiled
compiled
comp1 1 ed
compiled
compiled
compiled
compiled
comp) 1 ed
compiled
comp? led
compiled
comp led
compiled
compiled
compiled
compiled
compiled
comp! led
compiled
server port to default IP

UDP imitialized on port 0
err

script
script
Script
script
script
script
script
script
script
script
script
script
script
script
script
script
script
script
script
script
script
script
script
script

|| Type Commands Here

Introduction to TorqueScript

egt_base/client/ui/Pl ayGui. qui.
egt_base/client/ui/ChatHud. gui.
egt_base/client/ui/playerlist. gui.
egt_base/client/ui/mainkenuGui .gui.
egt_base/client/ui /aboutDlg. gui.
egt_base/client/ur/startMissionGui.gui.
egt_base/client/ui/joinServerGui.gui.
egt_base/client/ui/endGameGui. gui.
egt_base/client/ui/loadingGui.gui.
egt_base/client/ui/optionsDlg. gui.
egt_base/client/ui/remapDlg.gui.
egt_base/client/scripts/client.cs.
egt_base/client/scripts/missionDownload.cs.
egt_base/client/scripts/serverConnection.cs.
egt_base/client/scripts/playerList.cs.
egt_base/client/scripts/loadingGui.cs.
egt_base/client/scripts/optionsDlg.cs.
egt_base/client/scripts/chatHud. cs.
egt_base/client/scripts/messageHud.cs.
egt_base/client/scripts/p|ayGul.cs.
egt_base/client/scripts/centerPrint.cs.
egt_base/client/scripts/qame.cs.
egt_base/client/scripts/default.bind.cs.
egt_base/client/config.cs.

Console Output

To bring up the console, first, start the GPGT Lesson Kit, then hit the tilde

key (~) in the upper left corner of the US-standard keyboard (next to the 1).

The console will come right up (Figure 4.1).

 am

Note:

Mission,

‘Start Mission..

Lessons’

Some of the sample scripts rely on the presence of datablocks. Thus, it will

be necessary for you to first load the “3D Lessons” mission, before running

them. As a reminder, the prewritten scripts will print a warning if you are not

running the lessons mission:

If you are not running the Lesson Sampler

some examples may not work.

’ from the GPGT Main Menu and select

mission.

4.2.2 The Sample Script Console

In addition to prewritten scripts, you may at any time bring up a special appli-

cation supplied with the Lesson Kit, the Sample Script Console. This applica-

tion has an editor window where you can type (or paste) a script and then

execute it at the push of a button. The sample console will execute your script

and show you the results.

To start this application, just run the Lesson Kit and press the Sample

Script Console button.

Please click

‘3D

Chapter 4

Figure 4.1.

Script console.

101

Part Il

102

Engine Overview

4.3 TorqueScript Features

This scripting language has the following features.

e Type-insensitive. In TorqueScript, variable types are converted as neces-

sary and can be used interchangeably. TorqueScript provides several basic

literal types, which are described later in this chapter.

//pt00();

if(“1.2” == 1.2) {

echo(“Same, TorqueScript is type-insensitive”);

}

else {

echo(“Different, what!?”);

}

The code above will echo “Same, TorqueScript is type-insensitive.”

e Case-insensitive. TorqueScript ignores case when interpreting variable and

function names.

//bt01();

Sa = “An example”;

echo (Sa);

echo (SA);

This code will echo “An example” twice.

¢ Statement termination. Statements are terminated with a semicolon as in

many modern programming languages (C++, Java, JavaScript, etc.).

Sa = “This is a statement”;

If you do not include the semicolon at the end of a TorqueScript statement,

an error will be echoed to the console.

¢ Full complement of operators. The complete list of TorqueScript’s opera-

tors is given in the appendix. TorqueScript provides all the basic operators

common to most programming languages, along with a few more advanced
operators.

e Very complete set of supplemental string, math, and other functions. In
addition to the built-in operators, TorqueScript comes with a very complete

set of console functions that handle various string, math, and other opera-
tions. Table 4.1 lists some of the most commonly used functions. Please

note that these functions are fully described later in the book (in Chapter
9, “Game-Setup Scripting,” and Chapter 10, “Gameplay Scripting”), and

a quick-reference with complete syntax, description, and sample usage is

provided in electronic form with this guide.

Introduction to TorqueScript

getSubStr Itrim rtrim strchr

strcmp stricmp stripChars stripTrailingSpaces

strlen striwr strpos strreplace

strstr strupr trim

VectorAdd VectorCross

detag firstWord getField getFieldCount

getFields getRecord getRecordCount getRecords

getTag getWord getWordCount getWords

NextToken removeField removeRecord removeWord

restWords setField setRecord setWord

expandFileName fileBase fileExt fileName

filePath findFirstFile findNextFile getFileCount

getFileCRC isFile isWriteableFileName

VectorDist VectorDot

VectorLen VectorNormalize VectorOrthoBasis VectorScale

VectorSub

MatrixCreate MatrixCreateFromEuler MatrixMulPoint MatrixMultiply

 MatrixMulVector
getRandom getRandomSeed

setRandomSeed

mAbs mAcos mAsin mAtan

mCeil mCos mDegToRad mFloatLength

mFloor mLog mPow mRadToDeg

mSin mSolveCubic mSolveQuadratic mSolveQuartic

mSqrt mtTan

Chapter 4

Table 4.1

Commonly used Torque

console functions.

103

Part Il

104

Engine Overview

e Full complement of contro] structures. As with any robust language,

TorqueScript provides the standard programming constructs: if-then-

else, for, while, and switch.

//pt02();

for($a=0; Sa<5; Satt) {

echo (Sa);

}

¢ Functions. TorqueScript provides the ability to create functions with the
optional ability to return values. Parameters are passed by value and by

reference (see Section 4.3.5 for a detailed description and examples).

¢ Provides inheritance and polymorphism. TorqueScript allows you to

inherit from engine objects and to subsequently extend or override object

methods (see Section 4.3.6 for a detailed description and examples).

¢ Provides on-demand loading and unloading of functions. TorqueScript
Supports a very cool feature that allows you to load and unload functions

as needed (see Section 4.3.8 for a detailed description and examples.)

e Provides namespaces. Like C++, TorqueScript supports the concept of

namespaces. Namespaces are used to localize names and identifiers to

avoid collisions. This means, for example, that you can have two different
functions named doIt () that exist in two separate namespaces, but which
are used in the same code (see Section 4.3.9 for a detailed description and
examples).

« Compiles and executes byte-code. As a bit of icing on the cake, the
TorqueScript engine compiles scripts prior to executing them, giving a
speed increase as well as providing a point at which errors in scripts can

be reasonably found and diagnosed. This compilation is done just-in-time
and results in p-code, which is not the same as compilation of C++ or C,

which result in machine code.

With this overview of TorqueScript’s features, we can begin taking a detailed

look at how TorqueScript works. We’ll start by examining how TorqueScript

handles the basics—variables, operators, and control statements. With these

topics covered, we’]] move on to cover in detail the more advanced features

of TorqueScript.

4.3.1 Variables

Variables come in two flavors in TorqueScript: local and global. Local vari-

ables are transient, meaning they are destroyed automatically when they go

out of scope. And what is scope? Scope is a term used to refer to the block

of code a variable is defined in. For example, if we have a function, and

Introduction to TorqueScript

we declare a local variable inside of that function, the local variable will be

destroyed as soon as the function is done processing. When this happens,

we say the variable has “gone out of scope.” So, local variables only exist in

their local scope—the function they are defined in. A piece of code inside a

different function is not able to see the local variable. Global variables, on the

other hand, are permanent and exist throughout the entire program they are

defined in.

TorqueScript specifically marks local and global variables with special

characters so that they are easy to tell apart. The syntax is as follows.

$local_var = valuel;

Sglobal_var = value2;

In TorqueScript, variables do not need to be declared before you use them.

If a piece of code attempts to evaluate a variable that was not previously cre-

ated, TorqueScript will declare the variable automatically.

//bt03();

for(0; a < 5; S$at++) {

echo(“Sa == ” , %a);

}

echo(“Sa == " , %a);

Let’s take a closer look at what this code does. On its first pass through the

loop, the above code creates a new variable named %a. It must do so because

%a has not yet been created when the loop tries to use it for the first time.

1. The echo() command inside the loop will print the value contained in the

variable %a four times, echoing the values “”, 1, 2, 3, 4, and 5 as the loop
iterates and %a’s value increases. “” is known as the null string. The first
time through the above loop, %a is not yet defined, so TGE prints the null

string.

2. After the loop finishes, %a will be echoed once again, by the line after the

loop.

That is a basic description of how local and global variables work in

TorqueScript. However, we have not yet discussed the rules for naming

variables.

Variable names may contain any number of alphanumeric (a..z, A..2,

0..9) characters, as well as the underscore (_) character. However, the first

character in a variable’s name cannot be a number. You may end variable

&

Chapter 4

————_,

In computer-

science classes, we

are taught time and

time again that global

variables are bad.

Used to replace or

circumvent a feature of

the language you are

programming in, they

are bad.

In languages like C,

we have the ability to

pass values between

various levels of scope

{either file or function]

using pointers and

references.

As a scripting

language, TorqueScript

does not support these

constructs: everything

is passed by value.

Instead, the global

variable construct is

supplied. Its purpose is

to make data available

across any and all

scopes and contexts. In

short, globals are not

bad, and you should

use them while writing

scripts for Torque.
105

Part Il

106

Engine Overview

names with a number, but if you do, you must be especially careful with array

names. For further explanation, see “Arrays” in Section 4.3.2.

Lastly, local and global variables can have the same name but contain

different values. The following code will echo GPGT , GPGT 1, GPGT 2, and

GPGT 3.

//pt04();

Sa="GPGT”;

for(0; %a < 4 ; %at++) {
wow echo($a , 1 a);}

}

4.3.2 Data Types

TorqueScript implicitly supports several variable data types: numbers, strings,

Booleans, arrays, and vectors. Each type is detailed below.

Numbers

Nothing mysterious here. TorqueScript handles your standard numeric types.

123 (integer)

1.234 (floating point)

1234e-3 (scientific notation)

OxcO001 (hexadecimal)

Strings

This is for string data.

“abcd” (string)

‘abcd’ (tagged string)

Standard strings, in double quotes, behave as you would expect. Try these

examples:

//bt05();

echo (“Hello!”);

echo(“1.5% + “0.5”);

Strings that appear in single quotes, ‘abcd’, are treated specially by

TorqueScript. These strings are called tagged strings, and they are special in

Introduction to TorqueScript Chapter 4

that they contain string data but also have a special numeric tag associated

with them. Tagged strings are used for sending string data across a network.

The value of a tagged string is only sent once, regardless of how many times

you actually attempt the sending. On subsequent sends, only the tag value is

sent. Tagged values must be detagged when printing.

Try the following examples.

//bt06();

$a="This is a regular string”;

Sb='This is a tagged string’;

echo(“Regular string: “ $a);

echo(“Tagged string: “ Sb);

echo (“Detagged string: “ , detag($b));

You may find

it odd that the

last line shows a

blank. This is because,

although we have

created the tagged

string, it has not been

transmitted to us.

You can only detag a

tagged string that has

been passed to you.

Now that we know how to name strings and assign them values (normal

or tagged), let’s take a look at the special string operators TorqueScript offers.

String Operators

There are four string operators.

@ (concatenates two strings)

TAB (concatenation with tab)

SPC (concatenation with space)

NL (newline)

To concatenate two strings means, simply, to stick them together. For exam-

ple, if we concatenate the strings “Hi” and “there”, we end up with a big

string reading “Hithere”.

The basic syntax for these string operators is “string1” op “string2”.

//bt07();

echo(“Hi” @ “there.”);

echo(“Hi” TAB “there.”); // Note: TAB prints as * in console

echo(“Hi” SPC “there.”);

echo (“Hi” NL “there.”);

Escape Sequences

There is one last area you need to know about in order to work with strings

in TorqueScript: escape sequences.

\n (newline)

\r (carriage return) 107

Part Il

108

Engine Overview

\t (tab)

\c0O..\c9 (colorize subsequent text)

\er (reset to default color)

\cp (push current color on color stack)

\co (pop color from color stack)

\xhh (two digit hex value ASCII code)

\\ (backslash)

As in C, TorqueScript allows you to create a new line and tabs using the

tried and true backslash character. These are called escape sequences. Escape

sequences are used to indicate to the string-processing system that a special

character is being read.

Additionally, for data that is printed to the console and GUIs, you can

colorize by using \cn, where n jis a value between 0 and 9, representing a

predefined set of colors.

//bt08();

echo (“\C2ERROR!!!\c0 => oops!”);

The code above prints the line ERROR!!! => oops! with the first part in red

and the second part in black. Going into detail about console output color-

izing is beyond the scope of this chapter, but a little experimentation will go a

long way toward helping you understand how the system works.

Booleans

Like most programming languages, TorqueScript also supports Booleans.

Boolean variables have only two values—true or false.

true {1)

false (Q)

Again, as in many programming languages, the constant true evaluates to the

number 1 in TorqueScript, and the constant false evaluates to the number 0.

Be careful, however, when comparing numeric values to the Boolean values

true and false: only the values 1 and 0 will compare correctly. That is, in

TorqueScript, the following statement will echo 0.

echo(100 == true);

Numbers, strings, and Booleans: those are the basic data types in many pro-

gramming languages, and TorqueScript supports them all. Next, we’ll look at

higher-level variable data types: arrays and vectors.

Introduction to TorqueScript

Arrays

It is a common misconception that TorqueScript does not support multi-

dimensional arrays. This is not true, as the code below shows. The reason

many people get confused about multidimensional arrays in TorqueScript is

that there are multiple ways to address the array. As you can see, you can

separate the dimension indices (M and N) with commas or underscores.

SMyArray [N] (one-dimensional array)

$MyMultiArray[N,N] (multidimensional array)

SMyMultiArrayM N (multidimensional array)

You must understand that in TGE all variables are eventually interpreted as

strings. Furthermore, square brackets are removed, and commas are con-

verted to underscores during the interpretation process. Underscores remain

untouched. The real purpose of the brackets, commas, and underscores is that

they function as “composers;” i.e., they help build the string from its various

components. This is where the power of TorqueScript’s arrays comes in to

play. Consider the following code.

//bt09();

$TestVarEDO = 10;

Ssubstring = EDO;

echo (S$substring); // prints EDO

echo ($TestVar[Ssubstring]); // prints 10

What we have done here is use the square brackets to compose a variable

name on the fly.

There are a couple more things to know about TGE arrays.

1. $a and $a[0] are separate and distinct variables.

//bt10() ;

Sa = 5;

Sal0] = 6;

echo(“Sa == “, Sa);

echo (“Sa[0Q] == “, Sa[0]);

Run this code, and you will see that $a and $a[0] are distinct in the out-

put.

2. $MyArrayO and $MyArray[0] are the same. It may be surprising, but

TorqueScript allows you to access array indices without using the common

bracket [] syntax.

Chapter 4

—_______,

The use of

the square

bracket operator

to concatenate

{compose] variable

names on the fly is very

useful in TorqueScript,

but it should only be

used when the usage

does not obfuscate or

otherwise render the

script unreadable to

others.

We will in fact take

advantage of this

scripting feature in the

guide, but | will explain

my reasoning before doing so.
ee

109

Part Il

110

Engine Overview

//pti1();

SMyArray[0] = “slot 0”;

echo (SMyArray0);

SMyArray[1] = “slot 1”;

echo (SMyArrayl);

SMyArray[0,0] = “slot 0,0”;

echo ($MyArray0_0);

Now that we have a basic understanding of arrays, it’s time to move on to

vectors.

Vectors

This helpful data type is used throughout Torque.

“1.01.0 1.01.0% (4 element vector)

For example, many fields in the World Editor take numeric values in sets of 3

or 4. These are stored as strings and interpreted as vectors. There is a whole

set of console operations for manipulating vectors. Also, vectors are taken

as input for many game methods. In the following example, two vectors are

added together using the console function vectorAdd ().

//pt12();

SsrcRay = “1.0 0.0 1.0”;

SdestRay = “1.0 6.0”;

echo(VectorAdd($srcRay , S$destRay));

Remember, TorqueScript does not support pointers or references. This means

that all functions return values. In the above code, VectorAdd() is taking

two vectors as inputs and returning a new vector as an output.

We could alternately write the above code as follows.

$srcRay = “1.0 0.0 1.0";

SdestRay = “1.0 6.0”;

SresultVec = VectorAdd(SsrcRay , S$destRay);

echo(SresultVec);

Either of the above code snippets will output 1 6 1, which represents the

vector <1,6,1>, the result of adding the vectors <1.0,0.0,1.0> and

<1.0,6.0>.

Introduction to TorqueScript

Bad Vector Math

A common mistake among beginning Torque scripters is something like the

following.

echo(“1 2 3% + “4 5 6”); // Wrong!

The inexperienced scripter might expect the resultant output to be 5 7 9.

Instead, the output will simply be 5. Why? Because the built-in operators

only look at the first element of each vector. To correctly add (or otherwise

manipulate) vectors, use the supplied vector functions (full syntax given later

and in the appendices): vectorAdd, VectorCross, VectorDist, Vector-

Dot, VectorLen, VectorNormalize, VectorOrthoBasis, VectorScale,

and VectorSub.

4.3.3 Operators

A complete listing of TorqueScript’s operators can be found in the “Torque-

Script” appendix. Refer to the appendix for detailed information. In general,

operators in TorqueScript behave very similarly to operators in C-derived lan-

guages. However, there are two commonly encountered caveats when work-

ing with TorqueScript’s operators.

e Syntactically, the ++ and -- operators are only post-fix operators (i.e.,

++%a; which is a pre-fix operation, does not work; only $a++, which is a

post-fix operation, will work).

Sa = 15;

echo(Sat+); // Prints 16

e String comparisons are of the following form:

$= (string equal to operator)

'S= (string not equal to operator)

In TorqueScript, the equivalent of 0 for strings is the null string “”.

However, one has to be very careful when using the comparison operators.

If you use the numeric operator == to compare zero (0) and a null string (“”),

you will get a return value of true.

echo(0 == “”); \\ Will print 1 to console.

However, if we use the string comparison operator $=, the same comparison will

return false.

echo(0 $= *”); \\ Will print 0 to console.

Chapter 4

111

Part |]

112

Engine Overview

4.3.4 Control Statements

We’ll now take a look at TorqueScript’s control statements—branching and

looping structures. TorqueScript supports all the common control statements.

Branching Structures

We compare three branching control statements.

¢ if-then-else. The general structure of the if~then-else statement is
the following.

if(expression) {

statements;

} else {

alternate statements;

}

Things to know:

¢ Brackets ({}} are optional for single-line statements. (Many program-
mers find it more helpful to always use brackets.)

* Compound if-then-else-if-then-... statements are perfectly

legal. (Many programmers find switch statements easier to read for
large blocks of related if cases).

e switch. The general structure of the switch statement is as follows:

Switch(expression) {

case valued:

statements;

break;

casé valuel:

statements;

break;

case valueNn:

statements;

break;

default:

statements;

Things to know:

* switch only (correctly) evaluates numerics. There is a special state-

ment, switch$, for strings.

Introduction to TorqueScript Chapter 4

* break statements are superfluous. TorqueScript will only exe- 4 ~

cute matching cases. é

 7

If you area C or C++

coder, you may be used

to taking advantage of the
fall through ina switch

statement. For example, in C,

the following code will print

the same message for values 1,

2, and 3, but not for 4:

¢ In TorqueScript, switch statements are no faster than if-\

then-else statements.

* switchS. This statement behaves exactly like the switch state-
ment with one important exception: it is only for strings.

Looping Structures

We look at two looping control statements.

e for. The general structure of the for loop is the following. // C code

switch(val) {

for(expression0; expressionl; expression2) { case l:

statement (s); case 2:

case 3: }

Here is an example.

//bt13() ;

for(%count = 0; %count < 5; %Scountt++t) {

echo ($count);

}

As you can see, this is identical to the for loop in C++.

while. The general structure of the while loop is the following.

while(expression) {

statement (s);

}

Here is an example.

//bt14();

count = 0;

while (%count < 5) {

echo (%count) ;

S$count++;

Again, this is very similar to the looping structure in C++.

printf(“Hello”);

case 4:

printf(“World\n”);

}

In this sample, the cases 1

through 3 will print Hello

and fall through case 4 to

print World\n, in the end

producing Hello World\n.

You cannot do this in

TorqueScript. In the following

similarly structured example,

nothing will print for cases 1

or 2, and we will get Hello

for 3 and World for 4:

// TorqueScript
switch(%Sval)}

{
case l:

case 2:

case 3:

echo(“Hello”);

case 4:

echo(“World”);

}

Remember: switch

statements do not fall

through in TorqueScript.
113

Part Il

114

Engine Overview

As you can see, TorqueScript supports the standard set of control state-

ments and handles them very similarly to familiar languages like C++.

In the next section, we continue our detailed examination of Torque-

Script’s standard features. We’ll be looking at how TorqueScript handles func-

tions (it’s similar to C++, but more flexible).

4.3.5 Functions

Basic functions in TorqueScript are defined as follows.

function func_name([arg0],...,[argn]) {

statements;

[return val;]

Here is an example.

//echoRepeat () ;

function echoRepeat (%echoString, %repeatCount) {

for (%count = 0; $count < %SrepeatCount; %count++) {

echo (SechoString) ;

echoRepeat (“hello!”, 5);

The code above will echo the string hello! five times to the console.

TorqueScript functions can take any number of arguments, each separated

by commas. Functions may return a value by using the return statement,

just as in C++.

Things to know:

¢ If you define a function and give it the same name as a previously defined

function, TorqueScript will completely override the old function. Even if

you define the new function with a different number of parameters, if its

name is exactly the same as another function, the older function will be

overridden. This is important to note: TorqueScript does not support func-

tion polymorphism in the same way C++ does. However, TorqueScript pro-

vides packages (see Section 4.3.8), which can get around this problem.

e For functions defined in TorqueScript, if you call a function and pass fewer

parameters than the function’s definition specifies, the unpassed param-

eters will be given an empty string as their default value. Similarly, if you

pass too many parameters, the extras will be dropped.

4.

Introduction to TorqueScript Chapter 4

For functions defined in C++, if you call a function and pass fewer param-

eters than the function’s definition specifies, the engine will complain, and
the call will fail. The same goes for passing too many arguments.

TorqueScript supports recursion, and it behaves just as in C++. The follow-
ing example is a rewrite of the echoRepeat () function we used above, but

this version uses recursion instead of a for loop:

//echoRepeatRecurse () ;

function echoRepeatRecurse (%echoString, %repeatCount) {

if (%repeatCount > 0) {

echo (sechoString) ;

echoRepeatRecurse (%echoString, %repeatCount--—);

echoRepeatRecurse(“hello!”, 5);

3.6 Objects

Having covered the basics of the language, it’s time to examine some of

TorqueScript’s more powerful details.

In Torque, every item in a game is a SimObject, or a subclass of SimOb-

ject, and all of these objects can be accessed via script. For example, Player,

WheeledVehicle, and Item are all accessible via script, although they are

defined in C++. ,

Objects are created in TorqueScript using the following syntax (see

Table 4.2).

a

);

Svar = new ObjectType (Name : CopySource, argO0, ..., argn) {

<datablock = DatablockIdentifier;>

{existing _field0o InitialValued;]

It [existing fieldM InitialValueM;]

[dynamic _fieldO = InitialValue0;]

[dynamic _fieldN = InitialValueN;]

Let’s create a first object, with no initialization.
115

Part II

Table 4.2

Definitions of object syntax

elements.

116

Engine Overview

argn (optional)

Svar The variable where the object’s handle will be stored.

new A keyword telling the engine to create an instance of the following
ObjectType.

ObjectType Any class declared in the engine or in script that has been derived
from SimObject or a subclass of SimObject. SimObject-derived
objects are what we were calling “game world objects” earlier in

this book.

Name Any expression evaluating to a string, which will be used as the

(optional) object’s name.

CopySource The name of an object that is previously defined somewhere
(optional) in script. Existing field values will be copied from CopySource

to the new object being created. Any dynamic fields defined in

CopySource will also be defined in the new object, and their values
will be copied. Note that if CopySource is of a different ObjectType
than the object being created, only CopySource’s dynamic fields will
be copied.

argO, ..., A comma-separated list of arguments to the class constructor (if it
takes any).

datablock Many objects (those derived from GameBase, or subclasses of

GameBase) require datablocks to initialize specific attributes of the

new object. Datablocks are discussed in Section 4.3.10.

existing_ In addition to initializing values with a datablock, you may also

fieldN initialize existing class members (fields) here.

Note that if you wish to modify a member of a C++-defined class,

the member must have been exposed to the console.

aynamic_fieldN Lastly, you may create new fields (which will exist only in script) for

your new object. These will show up as dynamic fields in the World
Editor Inspector.

// Create a SimObject w/o modifying any fields

$example_ object = new SimObject();

Then create a second object using an initialization block.

// Create a SimObject w/ dynamic fields

Sexample object

a_new field =

};

= new SimObject() {

“Hello world!”;

Now let’s create a datablock definition.

Introduction to TorqueScript

// Create a StaticShape using a datablock

datablock StaticShapeData(MyFirstDataBlock) {

shapeFile = “~/data/shapes/player/player.dts”;

junkvar = “helloworld”;

he

Then make an object that uses that definition.

new StaticShape() {

dataBlock = “MyFirstDataBlock” ;

position = “0.0 0.0 0.0”;

rotation = “1 0 0 0%;

scale = “1 11";

hi

—

In the Expert Tip on p. 111, | mentioned that == and $= will return

opposite results when the operands are 0 and ””. Specifically, == will

compare them as being equal and $= as not equal. This is important to

remember when you check for the nonpresence of a dynamic field.

The safest way to check for a nonpresent field is the following.

Sy = new StaticShape() {

dataBlock = “MyFirstDataBlock”;

position = “0.0 0.0 0.0”;

rotation = “1 0 0 0%;

scale = “1 1 1%;

}i
if(S$y.myField == 0) {

echo(“myField is not initialized (not present)”);

}

This is the safest method of comparing, because it will continue to compare

correctly for:

* field not initialized,

* field set to 0,

* field setto ’”.

In other words, we can forget (or goof) later and preinitialize the field with a

value equivalent to logical false and this code will still work.

Of course, if you are really sharp and don’t make mistakes, you can compare for

uninitialized fields as follows:

if(Sy.myField $= “”) {

echo(“myField is not initialized (not present)”);

}

Just remember that this comparison can fail if the field is later preinitialized to 0.

 A

Chapter 4

117

Part |)

118

Engine Overview

Handles and Names

Every object in the game is identified and tracked by two parameters,

e Handle. Every object is assigned a unique numeric ID upon creation. This

is generally referred to as the object’s handle.

* Name. Additionally, all objects may have a name.

In most cases, handles and names may be used interchangeably to refer to

the same object, but a word of caution is in order: handles are always unique,

whereas multiple objects may have the same name. If you have multiple

objects with the same name, referencing that name will find one and only one

of the objects.

Fields and Console Methods

TorqueScript object fields and console methods are the equivalents of C++

object members and methods. Objects instantiated via script may have data

members (referred to as fields) and functional methods (referred to as console

methods). In order to access an object’s fields or console methods, one uses

the standard dot notation, as in C++.

// Note: The scripts below assume we have an object with a

// handle of 123, and a name of AName

// Directly access via handle

//

123.field name = value;

123.command ‘name () ;

// Directly access via name

//

AName.field_ name = value;

AName.command_name() ;

// Indirectly access via a variable

// containing either a name or a handle

//

sAVar.field name = value;

sAVar.command name();

To get a picture of how this works for real, do the following.

e Start the GPGT Lesson Kit.

e Run one of the missions.

Introduction to TorqueScript

e Start the World Editor Inspector (press F11).

e Switch to camera view (press ALT +C; on a Mac, you may need to select

Camera View from the Camera menu) and select the character (hold down

the right mouse button to look around; drag the mouse down until your

player comes into view).

e Give the character a name, such as myGuy (type myGuy in the textbox next

to the Apply button, and then click the Apply button).

¢ Open the console (press the ~ key).

e Then, run the following sample.

//bt16() ;

Splayer name = “myGuy”;

Splayer id = Splayer name.getID();

echo(Splayer name.position);

echo(Splayer name.getID());

echo(“myGuy”.getID());

echo(myGuy.getID());

In the above example, get ID() returns the unique ID of the player object.

Dynamic Fields

In addition to normal fields (object fields exposed to script by the engine),

TorqueScript allows you to create dynamic fields. Dynamic fields are associated

with a single instance of an object and can be added and removed at will.

Adding a dynamic field in TorqueScript is automatic. If you try to read

an object field and the field is not found, TorqueScript will simply return

an empty string, and no dynamic field will be created. However, if you try

to write to an object field that doesn’t exist, TorqueScript will automatically

create a matching dynamic field for the object, and assign it the value you

indicated.

//bt17();

// new_var will not be created because we are only

// ‘reading’ it

echo(Splayer_id.new var);

// new var2 will be created and initialized to “Hello”

Splayer id.new var2 = “Hello”;

echo(Splayer_ id.new var2);

Chapter 4

Dynamic fields, if

created, are only visible

by the server. When

objects and datablocks

are sent to the clients,

only those fields that

are exposed by the

engine will be sent to

the clients. This can

be a little confusing

until you understand

that the engine does

not have any context

for dynamic fields and

thus cannot send them

across the network.

If you find yourself

needing to add new

fields to existing objects

or datablocks, and if

you want them to be

transmitted to clients,

you may either write

networking scripts to

do this, or you may

edit the code and

recompile the engine.

Unfortunately, these

are both advanced

topics beyond the

scope of this book. For

now, just remember:

Dynamic fields are

not networked! JS

119

Part Il Engine Overview

4.3.7 Console Methods

In addition to supporting the creation of functions, TorqueScript allows you

to create methods within the scope of the console (not requiring you to use

C++ to add them). These are called console methods and are like functions,

except that they are associated with a specific namespace (see Section 4.3.9,

“Namespaces ”).

function classname::method_name(%this, [argQ],...,fargn]) {

statements;

{return val;]

 Table 4.3.
 oe TENOR aE ee Svea So eats

Definitions of console function A keyword telling TorqueScript we are defining a new function.
method syntax elements.

classname:: The class type this function is supposed to work with.

func_name The name of the function we are creating.

%this A variable that will contain the handle of the “calling object.”

Any number of additional arguments.

At a minimum, console methods require that you pass them an object han-

dle. You will often see the first argument named %this. People use this

{contains object ID of object calling this method), but you can name it

anything you want. As with console functions, any number of additional

arguments can be specified separated by commas. Also, a console method

may optionally return a value.

Being associated with a namespace, console methods may be called on

an instance of any object in that namespace. Calling on an instance means

that the method is called using dot (.) notation in one of the following three

ways:

When a console

method is called

by the engine, or on

the handle or name

of an object, the ID of

the object is passed

automatically as the

first argument.

// Aname is the object’s name

AName.methodName([arguments]});

or

// 123 is is the object’s numeric ID

123.methodName([arguments]);

or

120

Introduction to TorqueScript

// Svar contains the object’s name or ID

Svar.methodName([arguments]);

Here are some examples.

function Goober: :hi(%this) {

echo(“Goober Hello ”, %this);

Assuming our player handle is 1000, if we type:

1LO00.hi();

we get the following.

<input> (0): Unknown command hi.

Object (1000) Player->ShapeBase->GameBase->SceneObject->

NetObject->SimObject

What has happened is that Torque has searched the entire hierarchy of Player

and its parent classes, Jooking for a function called hi() defined in the con-

text of one of those classes. Not finding one, it prints the above message. To

demonstrate that Torque does search the class hierarchy of Player, try the fol-

Jowing next.

function NetObject::hi(%this) {

echo(“NetObject Hello ”, %Sthis);

}

Typing:

1000.hi();

we get the following.

NetObject Hello 1000

Next, if we define:

function Player::hi(%this) {

echo(“Player Hello ”, %Sthis);

Parent: :hi(%this);

}

Chapter 4

121

Part Il Engine Overview

we can type:

1000.hi();

and get the following:

Player Hello 1000

NetObject Hello 1000

Do you see what happened? Torque found Player: :hi() first, but we also

wanted to execute the previous definition of hi(). To do this, we used

the Parent:: keyword. Of course, not finding a ShapeBase instance,

sequent console which is Player’s literal parent, Torque then searched up the hierarchy of

methods with the the chain until it came to the NetObject version.

same name as prior Lastly, we can force Torque to call a specific instance as follows.
console methods

overrides the previous

definition permanently,

unless the redefinition

Defining sub-

NetObject::hi(1000);

is within a package gives us:

{see Section 4.3.8,

“Packages’). NetObject Hello 1000

and:

ShapeBase: :hi (1000);

also gives us:

NetObject Hello 1000

since there is no ShapeBase instance of hi () defined.

4.3.8 Packages

Packages provide dynamic function polymorphism in TorqueScript. In short,

a function defined in a package will override the prior definition of a same

named function when the package is activated. Packages have the following

syntax.

package package name() {

function function_definitionO() {

[statements;]

}

122

Introduction to TorqueScript

function function definitionN() {
{statements;]

}

le

Things to know:

e The same function can be defined in multiple packages.

e Only functions can be packaged.

e Datablocks (see Section 4.3.10) cannot be packaged.

Packages can be activated as follows.

ActivatePackage (package_name) ;

Packages can be deactivated as follows.

DeactivatePackage (package_name) ;

Packages are managed on a stack. Each call to ActivatePackage (package __

name) pushes its argument onto the stack, and it is always the topmost pack-

age that will be active.

The easiest way to get a feel for packages is with an example. The follow-

ing example is the most detailed we’ve looked at so far in this guide, but don’t

worry. It will make perfect sense when we're done.

The following code has been provided with the GPGT Lesson Kit. Sim-

ply start the Lesson Kit, open the console (~), and follow the instructions

below.

//test_packages(N); // N == 0, 1, or 2

// Define an initial function: demo()

//

function demo() {

echo(“Demo definition 0”);

// Now define three packages, each implementing

// a new instance of: demo()

//

package DemoPackagel {

Function demo() {

echo(“Demo definition 1”);

Chapter 4

123

Part I)

124

Engine Overview

package DemoPackage2 {

function demo() {

echo(“Demo definition 2”);

Me

package DemoPackage3 {

function demo() {

echo(“Demo definition 3”);

echo(“Prior demo definition was=>"”);

Parent::demo();

}

he

function test_packages(%test_num) {

switch(%test_num) {

// Standard usage

case 0:

echo (“++ rrr nn errr rn rr ert reser ");3

echo(“A packaged function overrides a prior”);

echo (“definition of the function, but allows”);

echo(“the new definition to be \’popped\’ ”);

echo(“off the stack.”);

eCho (S++ nr tr rrr rrr rr rer ern "\;3

demo ();

ActivatePackage (DemoPackagel);

demo ();

ActivatePackage (DemoPackage2) ;

demo ();

DeactivatePackage (DemoPackage2) ;

demo ();

DeactivatePackage (DemoPackagel) ;

demo ();

// Parents

case 1:

EChO (Sor rrr "\3

echo(“The Parent for a packaged function is”);

echo (“always the previously activated ”);

echo (“packaged function.”);

ActivatePackage (DemoPackagel) ;

demo ();

ActivatePackage (DemoPackage3);

Introduction to TorqueScript

demo () ;

DeactivatePackage (DemoPackage3) ;

DeactivatePackage (DemoPackagel) ;

demo () ; .
ActivatePackage (DemoPackagel) ;

demo ();

ActivatePackage (DemoPackage2) ;

demo ();

ActivatePackage (DemoPackage3) ;

demo () ;

DeactivatePackage (DemoPackage3);

DeactivatePackage (DemoPackage2) ;

DeactivatePackage (DemoPackagel) ;

// Stacking oddities

case 2:

echo (“Deactivating a \’tween\’ package will”);

echo (“deactivate all packages \’stacked\’ after”);

echo(“it.”);

ActivatePackage (DemoPackagel) ;

demo ();

ActivatePackage (DemoPackage2) ;

demo ();)

DeactivatePackage (DemoPackagel) ;

demo ();

The standard way to use a package is to define a previously defined func-

tion inside the package, activate it as needed, and then deactivate it to

go back to the default case for the function. To see this in action, type:

test packages (0);.

TorqueScript provides a useful keyword, Parent::. By using the

Parent:: keyword in a packaged function, we can execute the function that

is being overridden. To see this in action, type: test_packages (1) ;.

It is important to understand that packages are, essentially, stacked atop

each other. So, if you deactivate a package that was activated prior to other

packages, you are in effect automatically deactivating all packages that were

activated after it. To see this in action, type test_packages (2) ;.

Chapter 4

125

Part I

126

Engine Overview

Things to know:

e Packages may define new functions. Remember that when you deactivate
a package, these functions become undefined.

e The Parent:: keyword is not recursive, i.e, Parent::Parent::fun()

is illegal.

e Again, deactivating packages activated prior to other more recently acti-
vated packages deactivates all subsequently activated packages.

4.3.9 Namespaces

As previously mentioned, namespaces are provided in TorqueScript. The

way they work is quite simple. First, all objects belong to a namespace.

The namespace they belong to normally defaults to the same name as their

object’s class name. Players belong to the Player: : namespace, vehicles to

the Vehicle:: namespace, etc.

// Player class namespace

Player::

Also as previously mentioned, these namespaces provide separation of

functionality, such that one may have functions with the same name but

belonging to separate namespaces. To use one of these functions, either you

must manually select the appropriate namespace, or in some cases this is

done automatically for you.

It is important to understand that the :: is not magical in any way. In

fact, you can créate functions with :: in their name. This doesn’t mean they

belong to a namespace. If the expression prefixing the :: is not a valid class/

namespace name, in effect, all you have done is create a unique name.

// Not really namespaces

function Verl::doIt() {

\e

function Ver2::doIt() {

}e

Now, there is more to namespaces that you need to understand, but before

we can address that, we need to learn about some other topics. So, we will

revisit namespaces below in the appropriately titled Section 4.4, “Datablocks,

Objects, and Namespaces Revisited.”

Introduction to TorqueScript

4.3.10 Datablocks

Of all the features in TorqueScript, datablocks are probably the most confus- ’

ing. To make things worse, they are central to the creation of most objects,

which means you need to understand them relatively early.

“Datablocks are spectal objects that are used to transmit static data from server to

client” (from engine.overview.txt).

This definition, although true, doesn’t really tell us much. Some searching

turns up additional definitions.

“A datablock is an object that contains a set of characteristics which describe some

other type of object” (from Joel Baxter, in the GarageGames forums).

Better, but this is still a little blurry on the purpose and use of datablocks.

“A datablock is a(n) object that can be declared either in C++ engine code, or in

script code... Each declared datablock can then be used as a “template” to create

objects ...“{from Liquid Creations, Scripting Tutorial #2].

Very good. So, datablocks are templates, and we use them to create new

objects with the attributes specified by the template. But how do we do this?

Well, for the answer to that question, you’ll have to wait. First, we need to

discuss a few other important topics, and then we will revisit datablocks and

give them the thorough coverage that they deserve.

The Object-Datablock Connection

The Torque novice may stumble along for a bit, playing with the examples

that are provided with Torque. Eventually, the question arises, “Why are some

objects made with datablocks and others not?”

The answer, from a practical standpoint, is because otherwise you won’t

have a working game; specifically, any GameBase object, or subclass of Game-

Base, must be made with a datablock, otherwise the script will not compile.

To understand the philosophical reasons, we first observe that objects

placed in the game world will fall into three broad categories.

e The object does not have much associated data and/or has few param-

eters.

e The object does have a lot of parameters, but these parameters are likely

to be unique, or must be allowed to be unique, between instances of the

object.

e The object has a lot of data or parameters, but it is OK for these data/

parameters to be shared between instances.

The first two categories fit the class of objects that do not need and are

therefore not created from datablocks. Conversely, the third category fits the

Chapter 4

127

Part Il Engine Overview

class of objects that could benefit from using datablocks. Why? How? Recall

that, unlike normal objects, you are only allowed to have a single instance of

any one datablock. Furthermore, objects that are created from datablocks all

share the same instance of that datablock.

I can sense that some folks will be shaking their heads at this point, so

let’s look at Table 4.4, which should clarify the relationship.

In the code snippets in Table 4.4, we make two physical zones, indepen-

dent of each other. For each, we needed to specify all field values. We also

made two StaticShapes. Each StaticShape has unique attributes, but they both

share one datablock, which is used to describe the model they render and (as

we’ll see later) many more attributes.

Now, let’s examine the creation of non—-datablock-created objects in detail,

followed by datablock-created objects.

Table 4.4.

Comparison of non-datablock-based and datablock-based objects.

FEB a ss als a, Wie Se GR eee

mehiee oe ae _Datablock- eae i i

* Created directly from a C++ class in the console ¢ Created directly from a C++ class in the console

« Contains fields * Contains fields

¢ May contain dynamic fields ¢ May contain dynamic fields

© Requires an additional datablock field, which is assigned

a previously defined datablock.

new PhysicalZone(firstPhysicalZone) { datablock StaticShapeData(SimpleTargetO) {

position = “371.851 322.83 218”; category = “Targets”;

rotation = “1 0 0 0”; shapeFile = “~/data/../simpletarget.dts”;

scale = “1 11”; ‘3

velocityMod = “1”;

gravityMod = “1”; new StaticShape(firstTarget) {

appliedForce = “0 0 0”; dataBlock = “SimpleTarget0” ;

polyhedron = “10 10 101000-10001%; position = “360.17 325.775 219.906”;

}; rotation = “1 0 0 0”;

scale = “111%;

new PhysicalZone(secondPhysicalZone) { };

position = “671.851 125.83 218”;

rotation = “1 0 0 0”; new StaticShape(secondTarget) {

scale = “1 11%; dataBlock = “SimpleTarget0”;

velocityMod = “1%; position = “460.17 325.775 219.906”;

gravityMod = “1”; rotation = “1 0 0 0”;

appliedForce = “0 0 0”; scale = “1 11%;

polyhedron = “10 10 10 1000-1000 1%; hi

di

128

Introduction to TorqueScript

Creating Non-Databliock-Based Objects

I’ve provided the syntax for creating objects previously, but let’s go ahead

and create some variations of non-datablock objects to clarify the use of that

syntax. We will use physical zones (p-zones) in all our examples.

new PhysicalZone() {

};

The above example creates a p-zone but doesn’t specify a name or any

of the parameters; therefore, it will take the default value provided by the

C++ class’s constructor.

new PhysicalZone(SpeedupZone) {

position = “OQ 0 0”;

velocityMod = “2”;

i

The above example will create a p-zone named “SpeedupZone,” positioned

at <0,0,0>. This particular p-zone will multiply the player’s velocity by two

when the player enters the zone.

new PhysicalZone (SpeedupZone2

position = “10 10 10”;

i

SpeedupZone) {

The above example will create a p-zone named “SpeedupZone2,” positioned

at <10,10,10>. Aside from position, which has been redefined, it will inherit

(by copying) all the fields in the previous datablock definition, SpeedupZone.

However, the only field that will be different from the default is position.

Thus, the above p-zone creation statement, using inheritance, is equivalent to

the following p-zone creation statement, not using inheritance.

new PhysicalZone (SpeedupZone2) {

position = “10 10 10”;

velocityMod = “2”;

he ,

Creating Datablock-Based Objects

Like non-datablock-created objects, when we create new instances of data-

block-created objects, we can inherit (copy) fields from previously defined

datablock-created objects.

is

Chapter 4

———_______,

We will talk

about physical

Zones (p-zones) in

Chapter 8, “Mission

Objects,” but for now,

let me say that a p-

zone is a rectangular

object that can be

placed in the world

to change physical

characteristics in that

zone.

For example, a p-zone

can be used to change

the gravity and/or

apply a force and/or

modify an object's

current velocity when

the object passes into

or through the area

encapsulated by the

129

Part II

130

Engine Overview

In essence, I’m saying that the syntax rules for object creation are univer-

sal. To assure you of this, I will show you two examples of datablock-created

objects, one normal and one with inheritance.

new StaticShape(TestTarget) {

position = “0 0 0”;

rotation = “1 0 0 0%;

scale = “111%;

dataBlock = “SimpleTarget0”;

};

The above example creates a StaticShape named “TestTarget.” It defines the

position, rotation, and the scale. Additionally, it tells the engine to use data-

block “SimpleTargetO” to initialize this object’s datablock. Subsequently, this

object will always be associated with the datablock “SimpleTarget0.”

new StaticShape(TestTarget2: TestTarget) {

position = “0 10 0”;

hi

The above example creates another StaticShape. This one is named “Test-

Target2.” It inherits all the fields of TestTarget and overrides the position. The

important thing to understand is that it shares datablock “SimpleTargetO” with

the other instance of StaticShape, “TestTarget”; i.e, we have two instances of

StaticShape that share one instance of the datablock “SimpleTarget0.”

Declaring Datablocks

So far, we have clarified the connection between objects and datablocks. We

have demonstrated that only a single instance of any datablock can be created

and shared between any number of datablock-using objects. We have shown

that the rules for creating objects are the same between those objects that use

datablocks and those that do not. The only thing remaining for us to discuss

is the declaration of datablocks. So, let’s get to it.

We declare datablocks similarly to the way we create objects. Datablock

declaration syntax is as follows.

// In TorqueScript

datablock DataBlockType (Name [: CopySource]) {

category = “CategoryName”;

(datablock fieldQ = ValueQ;]

[datablock fieldM = ValueM;]

Introduction to TorqueScript Chapter 4

[dynamic _fieldd Value(;]

[dynamic_fieldN = ValueN;]

}i

As you can see, this is almost identical to the syntax used to create con-

sole objects. Let’s break it down bit-by-bit anyway in Table 4.5.

Syntax Ele ment _ t Ret ed Te tly Fate ;

EE te dt pie g ee

datablock A keyword telling the engine that this is a datablock object.

Table 4.5.

Definitions of datablock

declaration syntax

DataBlockType Any datablock class declared in the engine that has been derived elements.
from GameBaseData or a subclass of GameBaseData.

Name Any expression evaluating to a string, which will be used as the

datablock’s name.

: CopySource A previous datablock definition from which to inherit values.

(optional)

A keyword that tells the engine where to place this object in the
category World Editor Creator Tree (see Chapter 3, “Torque Tools”). If the

CategoryName does not exist in the tree, it will be created.

datablock_fieldM | You may initialize any and all existing fields in the datablock.

As with objects, you may add fields to the datablock that are

dynamic _fieldN not defined in the C++ version. Unlike objects, however, once

defined, these values are static.

Now, let’s do a few examples.

datablock StaticShapeData(MyTargets) {

category = “Targets”;

shapeFile = “~/data/shapes/targets/simpletarget0.dts”;

le

The above example declares a datablock of the type StaticShapeData named

“MyTargets.” Additionally, we have specified that this StaticShape should be

located in the “targets” folder in the World Editor Creator Tree. Lastly, it will be

drawn using the shape file located at “~/data/shapes/targets/simpletarget0.

dts.”

datablock StaticShapeData(SimpleTarget0O : MyTargets) {

StartHidden = 1;

};

131

Part {I

132

Engine Overview

The above example creates declares a datablock of the type StaticShapeData

named “SimpleTargetO” that inherits all the data from MyTargets. In addition,

this declaration adds a new variable named “StartHidden” and sets it to 1.

Accessing Datablock Fields

Remember that datablocks are SimObjects, and we can access (read) their

fields like any other object. However, changing a datablock field after the

datablock is created and transmitted to all clients will have no effect on the

client copies of the field(s) you have changed.

You may only get useful results from changing datablock fields in a single-

player game, because both the client and the server are sharing the same

datablock. In all other scenarios, you should consider the datablock object

to be a read-only object. 4

You might be using this guide in a classroom setting, or in another in-

structional venue. In that case, you might be using the console to load files

containing datablocks, scripts, etc. Later, when using the Lesson Kit on your

own, you might be surprised to find that the datablocks you were experimenting

with are suddenly gone.

The thing you must remember is that things that you do in the console are

transient and (generally) do not affect the setup of the kit. Thus, if you quit and

reload, any files you brought into context by loading via the console are now

not loaded.

So, to ensure that datablocks, scripts, etc. are loaded, you must modify the appro-

priate loader to bring them in.

For example, by default, the datablocks for a mission are loaded in the function

onServerCreated (), located in the file game.cs under the current game’s

“server” subdirectory (e.g. example/myGame/server/game.cs].

Simply add an exec statement to the list of others you see there to load your

datablock-containing file, and you'll be back in business.
\ /
Maze Runner Lesson #2 (90% Step)—Loading Datablocks

As we work on the Maze Runner game, we are going to need several data-

blocks and the accompanying scripts that were created for your use in this

game and in your future creations. So, let’s take the time now to get them

loading. From the accompanying disk, do the following.

1. Copy the “\Base\Scripts\GPGTBase” directory into “\MazeRunner\

prototype\server\scripts”.

2. Now, edit the function onServerCreated() in the file “\MazeRunner\

prototype\server\game.cs” to look like the following (bold lines are new or

modified).

Introduction to TorqueScript

exec(“./marker.cs”);

exec (“./player.cs”);

exec (“./GPGTBase/loadGPGTBaseClasses.cs”) ;

In the above script, we are loading all of the GPGT base datablocks (classes)

after all the other datablocks that FPS normally includes. We also add the data

files that go with the datablocks.

To test for a successful load, simply start the kit and load the “MazeRunner”

mission. Then run the Creator tool, and you should have directories in the

Creator as in Figure 4.2.

4.4 Datablocks, Objects, and Namespaces
Revisited

For every SimObject in Torque, there is a namespace. Additionally, namespaces

are chained. This means that, when the engine starts to search for something

in the namespace, it begins at the entry point associated with the current

object and seeks upward through all the parents’ namespaces until it either

finds what it is looking for or fails out. “Yes, yes,” you say, “we’ve covered

this, but how do we use this feature?” To answer that question, we’ll look at

some examples, starting with the simple stuff.

4.4.1 Object Namespace Hierarchies

When we wish to create a new method for the namespace of an object, we do

something like the following.

function GameBase: :DoIt(%this) {

echo (“Calling StaticShape::DoIt() ==> on object” SPC %this);

The function DoTt is being declared in the GameBase namespace. This means

that we can call this function on any object created from the GameBase class

or its children. Here is an example.

//bDt18 (a);

smyTarget = new StaticShape(CoolTarget) {

position = “0 0 0”;

dataBlock = “SimpleTargetl”;

i

smyTarget.DoIt ();

Chapter 4

Figure 4.2

Creator directory.

erga eran

BaseShapeBase

Baseltem

BaseStaticShape

Bipeds

L BasePlayer

baseVehicles

E BoxCar

BoxHover

133

Part Il

134

Engine Overview

Assuming the ID in ’myTarget is 100, the above call would produce the fol-

lowing output in the console.

Calling StaticShape::DoIt() ==> on object 100

You'll notice a couple of things.

1. When we called DoIt (), we did so without passing an argument explicitly,
but when the console message printed, it did in fact get an argument with
the value 100.

2. The one argument DoIt () does take is named %this.

Regarding number 1, because we used the handle to call the function

[smyTarget.DoTt ()], the ID of this object gets passed implicitly to the func-

tion (see Expert Tip, page 120). That said, all of the following calls will pro-

duce the same result. Note that because this sample is in a function and

because we create a new object each time we run it, the ID of the object will

change for every run.

//t18 (b) ;

smyTarget.Dolt();

StaticShape: :DoIt (%myTarget) ;

CoolTarget.DoIt();

“CoolTarget”.DoIt();

100.DoIt ()

“100” .DoIt ()

StaticShape::DoIt (100);

As you can see, there are various ways to call the same function, all of which

are useful in different scenarios. Please note that, in the cases where we use

the name of the object, the name will be passed as the ID. Torque automati-

cally does look-ups for names; thus, in most cases, names can be used inter-

changeably with IDs, as long as the names are unique.

We've discussed the most basic use of namespaces. Now let’s talk about

datablock namespaces.

4.4.2 Simple Datablock Namespaces

As previously mentioned, datablocks are nothing more than objects them-

selves. They exist in the console alongside regular objects, and they too have

their own namespaces. For example, if we wish to create a new method for the

ItemData namespace, we can do something like the following.

function ItemData: :GetFields (

echo (“Calling ItemData::GetFields

echo (“ category =>” SPC %ItemDbID.category) ;

echo (“ shapeFile =>” SPC %ItemDbID.shapeFile) ;

echo (“ mass =>" SPC %ItemDbID.mass) ;

echo (“ elasticity =>” SPC %ItemDbID.elasticity) ;

echo (“ friction =>” SPC SItemDbID. friction);

echo (“ pickUpName =>” SPC @ItemDbID.pickUpName) ;

Introduction to TorqueScript

%ItemDbID) {

() ==> on object” SPC %$ItemDbID) ;

The function GetFields is being declared in the ItemData namespace.

Baseltem is an instance of ItemData.

// £rom GPGT Lesson Kit = Item.cs (edited)

datablock ItemData(BaseItem) {

hi

category = “TestShapes”;

shapeFile = “~/data/GPGTBase/shapes/markers/dummy.dts”;

mass = 10.0;

elasticity = 0.05;

friction = 0.7;

pickUpName = “Default Item”;

We could call our new function on Baseltem as follows.

//bdt19();

>Baseltem.GetFields();

Calling ItemData::GetFields () ==>

category =>

shapeFile =>

mass =>

elasticity =>

friction =>

pickUpName =>

on opject BaselItem

TestShapes

Chapter 4

gpgt/data/GPGTBase/shapes/markers/dummy.dts

10
0.0498534
0.698925
Default Item

Now, this may seem completely trivial, but it is important to understand that a

majority of the interesting methods that are called by the engine as a response

to user action, like onCollision(), onAdd(), create (), etc., are not called

on instances of objects. They are called on the datablocks of instances of

objects that use datablocks. This is crucial, because we can do some very

special things with datablocks and their namespaces.

135

Part Hl Engine Overview

When the engine calls a method that ts scoped to a datablock, the engine will

always pass the datablock ID as the first argument and the object ID as the

second argument.

function CrossbowAmmo::doIt(%DB, %O0bj) {

echo(“DB: “ , DB , “Obj: “ , %Obj);

Also, we can manually call console methods scoped to datablocks in three ways.

Sammo = new Item() {

datablock = CrossbowAmmo;

}
// 1 - Direct call, must pass Datablock and Obj ID

// Output: DB: 123 Obj: 456.
Crossbowammo::doit(Crossbowammo , Sammo)j;

// 2 - Call on datablock name, must pass Obj ID
// Output: DB: Crossbowammo Obj: 456.
Crossbowammo.doit(Sammo);

// 3 - Call on stored datablock ID, must pass Obj ID
// Output: 123 Obj: 456.
SDBID= Sammo.getDatablock ();

SDBID.doit(Sammo);

| In the first case, we are using the syntax rules of TorqueScript to treat the

| method-scoped function like a flat function. We call it directly and pass both the

datablock ID and the object ID.

In the second case, we refer to the datablock by name and pass the object ID. In the third case, we acquire the ID of the datablock with another console

method get Datablock () and call the method on it, again passing the ID of

A, the object.
4.4.3 Inserting Datablock Namespaces (ClassName]

Datablocks provide a hook with which to manipulate the namespace calling

sequence. The hook is the className field. It works as follows.

datablock ItemData(CrossbowAmmo) {

className = “Ammo”;

)i

136

Introduction to TorqueScript

What this is doing is adding a new namespace between CrossbowAmmo

and ItemData, so that the namespace calling sequence will look like this:

CrossbowAmmo — Ammo —> ItemData — etc. We could define two functions

as follows.

function Ammo: :onPickup (%AmmoDB, %AmmoOBJ, SPicker, %Amount) {

echo (“Calling Ammo::onPickup () ==> on ammo DB” SPC %AmmoDB) ;

SAMMODB.DoIt ();

function Ammo::DoIt(%AmmoDB) {

echo (“Calling Ammo::DoIt () ==> on ammo DB” SPC %AmmoDB) ;

}

Then we could collide with an ammo item. This would then automatically

call the onPickup() callback, and we would expect to see the following

message (assuming the datablock ID is 66).

Calling Ammo::onPickup () ==> on ammo DB 66

Calling Ammo::DoIt () ==> on ammo DB 66

This powerful feature allows us to insert a special namespace that we can use

for several different datablocks. In other words, we could define two more

ItemData datablocks as follows.

datablock ItemData(FlamingCrossbowAmmo) {

className = “Ammo” ;

he

datablock ItemData(ExplodingCrossbowAmmo) {

className = “Ammo” ;

i

We would then have the structure shown in Figure 4.3.

Later in our code, objects derived from the three different datablocks

CrossbowAmmo, FlamingCrossbowAmmo, and ExplodingCrossbowAmmo can

all use the same onPickup () and DoIt () functions as declared in the Ammo: :

namespace. This cuts way down on the amount of code we need to write.

Chapter 4

You cannot
legally specify a

className that is the

same as the current

datablock name.

137

Part tl

Figure 4.3.

Sharing namespace with

className keyword.

Engine Overview

ItemData

Ammo

FlamingCrossbowAmmo CrossbowAmmo ExplodingCrossbowAmmo

4.4.4 Namespace Inheritance?

You might wonder at some time whether namespace hierarchies can be inher-

ited. The answer is no. If we do this:

datablock ItemData(CrossbowAmmo) {

//

i

datablock ItemData(FlamingCrossbowAmmo : CrossbowAmmo) {

//

}e

the namespace calling sequence for CrossbowAmmo will be CrossbowAmmo

— ItemData —> etc., and for FlamingCrowssbowAmmo it will be Flaming-

CrossbowAmmo —> ItemData —> etc. (see Figures 4.4 and 4.5). If we want

FlamingCrossbowAmmo to use the CrossbowAmmo namespace, we have to

do the following.

datablock ItemData(CrossbowAmmo) {

//

}e

Figure 4.4. Figure 4.5. Figure 4.6.

CrossbowAmmo namespace not CrossbowAmmo className inherited, then overridden.

inherited. namespace added.

ltemData ItemData ltemData

CrossbowAmmo Ammo SomeOtherAmmo

CrossbowAmmo FlamingCrossbowAmmo 4 J \

138
FlamingCrossbowAmmo CrossbowAmmo FlamingCrossbowAmmo

Introduction to TorqueScript

datablock ItemData(FlamingCrossbowAmmo) {

//

className = “CrossbowAmmo” ;

//

};

Please note that if you do define a className field in a datablock, subse-

quent children datablocks will copy that value to their own className field

unless it is overridden in the child’s definition, as follows (see Figure 4.6).

datablock ItemData(CrossbowAmmo) {

//
className = “Ammo”;

//

};

datablock ItemData(FlamingCrossbowAmmo : CrossbowAmmo) {

//
className = “someOtherAmmo” ;

//

};

4.4.5 A Parting Reminder (Datablock versus
Object Namespaces}

Before closing this chapter, I want to take a moment to remind you that, when

you create new objects that use datablocks, the majority of the functions

that are called by the engine are called on the datablock of the object, not

the object itself. I’ve seen questions time and again in the forums that have

their root in confusion about this topic. So, save yourself a headache later and

make sure you get this idea down firmly!

4.4.6 Helping Yourself

The console supplies a few helpful functions and method that can be used

to get extra information about objects and the functions that are available to

you.

dump () and tree ()

If you have an object or a datablock and want to know what fields it has and

what methods are scoped to it, type the following in the console (assuming

the ID of the object or datablock is stored in $Obj).

$Obj. dump () ;

Chapter 4

139

Part I!

140

Engine Overview

To see a listing (inspector) of all the objects that are currently loaded, type:

tree ();

This will bring up a special debugging too] that functions much like the

Inspector.

4.5 Summary

It has been a long chapter, but you made it through. It is doubtful that anyone

could fully absorb all of the information presented in this chapter after just one

reading. So, while you work with Torque and encounter problems, use this

chapter as a resource, revisiting sections that were not clear on the initial pass.

To recap, and as a reference, here is what we covered.

e First, we talked about what game-engine scripting languages are and why

they're useful. We talked about the features a good scripting language

should have and discovered that TorqueScript has all of them.

¢ With the introductory analysis out of the way, we dug into the meat of

TorqueScript, studying each of the features of the language in detail. We
talked about TorqueScript’s variables at length—studying variable naming

and scoping and the numeric, string, Boolean, array, and vector datatypes.

e Continuing with the detailed overview of the language, we looked at

TorqueScript's operators, control statements, and functions.

e We then covered how to use objects in TorqueScript, looking at their

handles and names, fields and commands, dynamic fields, and console

methods.

e Next, we quickly introduced packages, namespaces, and datablocks. We

covered these sections briefly at first, needing to understand more about

the interaction between the engine and the script console before we could

go into further detail.

e After a detailed look at the engine-console interface mechanisms in Torque,
we came back to datablocks, objects, and namespaces. For datablocks in

particular, we found out how datablocks and objects are related to each
other and found out how to declare datablocks. Studying namespaces,
we learned that they can be tricky but discovered object namespace hier-
archies, learned how to create simple datablock namespaces, and then

became datablock namespace masters.

e We ended with a quick discussion of how to help yourself, covering a few
more features of Torque that enable debugging.

Chapter 5

Torque Core Classes

All right! We’ve finished going through the engine overview and now it is

time to jump into the guts of some important TGE classes. As was previously

mentioned, at its core, TGE is an event-driven simulator. This simulator has

defined a hierarchy of classes, based on the aptly named class SimObject.

In this chapter, we will be inspecting the SimObject class, and some of

the other core classes. Each of these core classes is a major branch in the

SimObject hierarchy, off of which many other classes hang. We will discuss

those (hanging) classes in the subsequent chapters.

The following specific classes are covered in this chapter.

¢ SimObject. The root class for all other SimObjects. Understanding this
class is fundamental to understanding how TGE classes interact.

¢ SimDataBlock. The base datablock class. We have already discussed this

class, but we will revisit it to ensure that we are ready to move on to sub-
sequent classes.

¢ SceneObject. The base class for almost all scene-placeable objects.

¢ GameBase and GameBaseData. These (otherwise minor) classes repre-

sent the first object-datablock pairing and act as parents to all subsequent

classes with this kind of relationship.

Please note that the dotted line in Figure 5.1 indicates that there is a class

between the two connected classes that we are not discussing.

5.1 SimObject

5.1.1 SimObject Features

SimObject has the following features.

e Identification

* Object name (alphanumeric)

* Object ID (numeric)

* Group ownership

e Saving

* Save to file

143

Part Il

144

Game Elements

e Self-Documentation

¢ Object information dumping

* Classification

* Class Name

* Object Type (a bitmask)

e Destruction

5.1.2 SimObject Description

As one would expect of a root class, this class forms the basis for the organi-

zation and usage of all subsequent classes. Its major responsibility is to track

standard data about an object, such as the object’s name, ID, what SimGroup

it belongs to (if any), and what type of object it is. It also handles saving itself

to file, deleting itself, scheduling actions on itself, and dumping a list of con-

sole methods and fields associated with itself.

5.1.3 Name and ID, Please...

An object will always have a unique ID and may optionally have an alpha-

numeric name. Furthermore, objects may be referenced by name or by ID.

ID referencing is the preferred method because it is unambiguous. Multiple

objects may share the same name, and references by name always retrieve the

first object found to have the specified name.

Examine the following code to see how using names instead of IDs can

lead to confusion.

//ts00();

// The following code demonstrates the issue that occurs

// when giving multiple objects the same name.

$0bj0 = new SimObject(test); // a SimObject named ‘test’

%isSame = Sobj0 == test.getID());

echo(“%$obj0 == test.getID() => ”, %isSame);

$obj1 = new SimObject(test);

S$isSame = (%Sobj0 == test.getID());

echo(“%obj0 == test.getID() => ”, %isSame);

S$isSame = (%objl == test.getID());

echo(“%objl == test.getID() => ”, %isSame);

Torque Core Classes Chapter 5

The following results for the above code show that the engine finds the last

instance of a named object when searching by name.

S$0bDj0 == test.getID() => 1

S$0bj0 == test.getID() => 0

Sobj1 == test.getID() => 1

5.1.4 Class Name and Type Information

Every object is created from a class, and every class has a unique class name.

This information can be retrieved via script and is useful for categorizing

objects. Additionally, every object stores information about its inheritance

structure, that is, its type.

//ts01();

tobj = new Player(SuperGuy) {
datablock = BasePlayer;

hj

// will echo ==> Player

echo(%obj.getClassName());

// will echo ==> SuperGuy

echo(%obj.getName());

// will echo ==> PlayerData ©

echo (%obj.getDatablock().getClassName());

// will echo ==> BasePlayer

echo SOobj].getDatablock().getName());

What about type information? In TGE, each mission-placeable object derived

from SimObject has the ability to store and retrieve a mask value that shows

the object’s inheritance structure. For example, a WheeledVehicle, being far

down the chain, will have bits for WheeledVehicle, Vehicle, ShapeBase, and

GameBase set. Why are there no bits for the hierarchy between SceneOb-

ject and SimObject? It is implied. You cannot place an object that is not a

SceneObject, and SceneObject is a child of SimObject.

The actual bit values are declared in objectTypes.h, but to make scripting

simpler, they are exposed as named variables (done in main.cc). The follow-

ing types are currently defined.

145

Part Ill

146

Game Elements

$TypeMasks: :StaticObjectType $TypeMasks: :EnvironmentObjectType

$TypeMasks: : TerrainObjectType $TypeMasks: :InteriorObjectType

$TypeMasks: :WaterObjectType $TypeMasks: : TriggerObjectType

$TypeMasks: :MarkerObjectType $TypeMasks: :GameBaseObjectType

$TypeMasks: :ShapeBaseObjectType $TypeMasks: :CameraObjectType

$TypeMasks: :StaticShapeObjectType $TypeMasks: :PlayerObjectType

$TypeMasks: : ItemObjectType $TypeMasks: :VehicleObjectType

$TypeMasks: :VehicleBlockerObjectType $TypeMasks: :ProjectileObjectType

$TypeMasks: : ExplosionObjectType

To check the type of an object, we use the getType() method and use bit-

wise operators to compare return value against the above masks.

//ts02();

sob) = new Vehicle() {

datablock = BoxCar;

);

if(tobj.getType() & $TypeMasks::VehicleObjectType) {

echo(“Yup, it’s a vehicle...”);

}

else {

echo(“Sorry, but that is not a vehicle...”);

‘ob].delete();

Sobj] = new Player() {

datablock = BasePlayer;

);

if(sobj.getType() & $TypeMasks::VehicleObjectType) {

echo(“Yup, it’s a vehicle...”);

}

else {

echo(“Sorry, but that is not a vehicle...”);

S0b].delete();

Torque Core Classes

Object type masks are used in a variety of other ways, so you might want to

bookmark this page.

5.1.5 Saving and Deleting

Removing an object from the world is as simple as telling that object to delete

itself,

Sobj.delete(); // Ahh! I kill myself... ;)

Objects are able to clean up their own fields and otherwise cleanly remove

themselves from the world. However, as a general rule, objects do not auto-

matically delete other objects that they may logically own. Fortunately, there

are callbacks and SimGroups to help us out here. These are both topics for a

later chapter, so for now just read on.

5.1.6 Dumping Information

At the end of Chapter 4, we introduced the dump () function. This function is

introduced by the SimObject and can therefore be called by any child of this

class.

The dump () function prints all the following information associated with

an object to the console:

e¢ Engine-registered console methods. All methods registered as being asso-
ciated with the dumping object’s class or one of its parents.

¢ Console-registered console methods. Al! scripted methods associated
with the dumping object’s class or one of its parents.

¢ Member (nondynamic) fields. Fields permanently exposed for this class
(by the engine).

¢ Tagged (dynamic) fields (for this object). Fields created in the dumping

object during or subsequent to its creation.

You will probably use this function quite a bit, so let’s give it a quick try

to get you started.

//ts03();

Sob}] = new SimObject();

$o0bj.-dump () ;

5.1.7 Group Membership

We have not discussed them yet, but Torque has two (base) container classes,

SimSet and SimGroup. The latter has a special property, wherein any object

Chapter 5

147

Part lif

Table 5.1

Summary of SimObject
methods.

148

Game Elements

stored in a SimGroup is guaranteed to only be stored in that SimGroup and no

other SimGroup. SimSets offer no such guarantee.

We will discuss this in some detail later, but for now, let’s just remember

that an object can only be in any one SimGroup (container) at any one time.

Given this restriction, it is possible that we might want to know what Sim-

Group our object is in. If we have the name of an object, or if we have its ID,

we can simply “ask” the object what container it is in.

Sobj].getGroup ()

The above code will return either -1, or a nonnegative numeric value. If the

value -1 is returned, the object is not stored in a group; otherwise, the numeric

ID that is returned is the ID of the SimGroup container that currently “owns”

this object.

5.1.8 SimObject Methods

SimObjects have several useful built-in methods, described in Table 5.1.

Rccsdihs
delete () Delete this object.

dump () Dump information about this object to the script console.

getClassName () Return this object’s C++ class name.

getGroup () Get the ID of the group this object is stored in, or else retum —1.

getID{) Get this object’s numeric ID.

getName () Get this object’s alphanumeric name.

getType () Get this object’s type bitmask.

save (fileName) Save this object to the file specified in fileName.

schedule (}) Described later in Chapter 9, “Gameplay Scripting.”

setName (newName) | Change the name of this object to value in newName.

5.2 SimDataBlock

5.2.1 SimDataBlock Features

SimDataBlock features include the following.

e Initialization

e Scoping

Torque Core Classes Chapter 5

SimDataBlock is the root class of all datablock classes. We have talked

about datablocks quite extensively already. However, I would like to quickly

revisit a few important datablock features, ending with a lead-in to the topic

of callbacks.

5.2.2 Datablock-Object Pairing

Remember that almost all GameBase-derived objects are paired with a like-

named SimDataBlock-derived class. Table 5.2 shows the current complete

(alphabetic) list of pairings.

- Table 5.2

CameraData Camera PathCameraData PathCamera Datablock-object pairings.

DebrisData Debris PathedInteriorData Pathedinterior

ExplosionData Explosion PlayerData Player

FlyingVehicleData FlyingVehicle PrecipitationData Precipitation

fxLightData fxLight ProjectileData Projectile

GameBaseData GameBase ShapeBaseData ShapeBase

HoverVehicleData HoverVehicle ShapeBaseImageData - none -

ItemData Item SimDataBlock - none -

LightningData Lightning SplashData Splash

MissionMarkerData MissionMarker StaticShapeData StaticShape

ParticleData - none - TriggerData Trigger

ParticleEmitterData ParticleEmitter VehicleData Vehicle

ParticleEmitterNodeData | ParticleEmitterNode WheeledVehicleData | WheeledVehicle

The className

keyword should

not be confused

with a class’s name

(from SimObject).
It serves a different

purpose and does not

affect the output of

getClassName().

 5.2.3 Namespace Rules

Chaining and Building

All SimObject-derived classes have a namespace calling chain. SimDataBlock-

derived classes add to the namespace chain in two ways. First, they add the

name of the datablock to the chain. Second, they have a mechanism for add-,

ing an additional namespace by using the className keyword.

149

Part {lt

150

Game Elements

datablock PlayerData(myPlayerDatablock) {

className = myPlayerDataBlockParent;

3

The above datablock produces a namespace chain like the following.

myPlayerDataBlock > myPlayerDataBlockParent > PlayerData >...

The class name above could have been any string not already in the chain. |

chose “myPlayerDataBlockParent” so that the hierarchy would be clear, but I

could just as well have called it “Freddie” and gotten the following chain.

myPlayerDataBlock — Freddie — PlayerData >...

We can later use this datablock to build an instance of the Player class as

follows.

SmyPlayer = new Player(TorqueDude) {

datablock = “myPlayerDatablock’” ;

3

Noninheritable

In standard TGE, namespaces are noninheritable in the console. This means

that, if we create a new datablock myPlayerDatablock2 and inherit (copy) the

fields from myPlayerDatablock, as follows:

datablock PlayerData(myPlayerDatablock) {

className = myPlayerDataBlockParent;

be

datablock PlayerData(myPlayerDatablock2

myPlayerDatablock) {

// Copies: className = myPlayerDataBlockParent;

// from myPlayerDatablock

//

);

the new datablock will not have the myPlayerDatablock name in its namespace.

Instead, its namespace will look like the following.

myPlayerDataBlock2 — myPlayerDataBlockParent — PlayerData >...

It does inherit the added namespace specified by className, but the parent

datablock namespace is lost.

Torque Core Classes

Scoping

As a direct result of this namespace business and due to the way TGE is

designed, we can create console methods (functions scoped to a console

class) as follows.

Chapter 5

function myPlayerDataBlockParent::DoIt(%theDB , %optionalArgs, ...) {

//

};

As can be seen from this example, the function DoIt() has been scoped

to the myPlayerDataBlockParent namespace, using the namespace resolution

operator ::. Thus, we now refer to DoIt () as a console method (or method,

for short).

This (noncallback) method takes a minimum of one argument and may

have as many additional arguments as we deem necessary. The required

argument is often named %this, but in our example it has been given the

more meaningful name %theDB. Why? Well, as you probably recall, when the

method is called (properly), the engine will pass, as the first argument, the

ID of the datablock associated with the object that caused the method to be

fired.

We can certainly call methods directly, or on a datablock name/ID if we

want to, but most of these methods are called by the engine as the result of

some event. Recall (from earlier) that methods called as the result of some

event are called callbacks.

5.3 SceneObject

5.3.1 SceneObject Features

SceneObject features include the following:

e Transforms

* Position

* Rotation

* Scale

* Transform

* Forward vector

¢ Collision Detection

¢ Volumes

* Object box

¢ World box

Ss

 ie ____

—————___—_,

Remember

that, when the -

engine automatically

calls amethod ona

datablock, the method

is referred to asa

callback. All callbacks

scoped to datablocks

receive two default

arguments, not the

single argument a

regular datablock

method gets. The first

argument is the ID of

the datablock, and

the second argument

is the ID of the object

that the callback

is being called for.

Torque implements

a great number of

callbacks. For the

most part, we do not

discuss them in this

guide. However, those

callbacks that will
affect our efforts to

write a single-player

game will be discussed.
151

Part Il!

Table 5.3.

Access methods.

152

Game Elements

5.3.2 SceneObject Description

A SceneObject is an object capable of appearing in a scene. It can be rendered.

It may be moved, rotated, and scaled. It may be collided with, and it takes up

space within the game world.

5.3.3 Position, Rotation, and Scale

All SceneObject-derived objects provide three basic fields.

¢ Position. A three-element floating-point field describing the object’s initial
placement position in the world.

¢ Rotation. A four-element floating-point field specifying the shape’s rota-

tion as a quaternion.

e Scale. A three-element floating-point field specifying the x-y-z scaling fac-

tors for a shape.

Sob} = new Player(Blockman) {

position = “0 0 0%; // start at world-zero

rotation = “1 0 0 0”; // quaternion giving zero rotation

scale = “1 1 2.5”; // 2.5 times as tall as standard version

Me

These fields are used during the creation of an object to set the object’s initial

position, rotation, and scale. Not a big surprise.

The real surprise comes later, if you try to modify these fields directly.

If you are using the Inspector to make these changes, they will always take

effect, but if you are using scripts, your results will vary. This is because

some objects regularly mark these fields as dirty and retransmit them to the

client ghosts while other classes never mark them as dirty so the changes go

unheeded.

This is not a bug. You are not supposed to modify these variables directly,

but rather use access methods. These access methods are described in

Table 5.3.

getPosition() Returns the object’s current position.

getScale() Returns the object’s current scale.

setScale (newScale) Sets the object's scale to newScale.
The access methods described might not seem like enough. This is because

the makers of the engine have combined the position and orientation informa-

tion into a composite vector called a transform.

Torque Core Classes Chapter 5

5.3.4 The Transform

An object’s transform is a composite vector containing both position and rota-

tion information.

“posxX poxY posZ rotX rotY rotZ rotTheta”

The access methods used to get and set transform are defined in Table 5.4.

getTransform() Returns the object’s transform vector. Access methods to get and
set transform.

setTransform(newTransform) | Sets the object’s transform to newTransform and

marks this information as dirty so that all ghosts are updated.

In the following example, we want to translate an object by 10 meters

along the world x-axis. Using a couple of string functions we extract the posi-

tion and rotation vectors as well as the rotation theta about the rotation vec-

tor. Then, we add “10 0 0” to the position vector. After re-assembling the

vector, we translate the object’s position by passing in the new transform

to a setTransform() call. Simple.

smyTransform = %obj.getTransform() ;
smyPosition = getWords(%myTransform, 0, 2);

smyRotationVec = getWords(@myTransform, 3 , 5);

smyRotationTheta = getWord(%myTransform, 6);

// Move shape +10 in X direction

smyNewPosition = vectorAdd(%@myPosition , “10 0 0”);

Sobj].setTransform(tmyNewPosition);

The methods getWords(), getWord(), and vectorAdd() will be

described in Chapter 9, “Gameplay Scripting”.

5.3.5 Collision Detection

This class introduces the ability to interact with the world via collisions.

SceneObjects can collide with other objects and can be collided with. Collision

detection and response is a complex and advanced topic, which we won’t be

able to cover in detail; however, as with callbacks, those collisions that we

need to discuss will be discussed briefly prior to writing any of the required

code for our game.

 —
For some objects,

it is actually

possible to modify

the object's position

field and then to

rescale the object to its

current scale. This will

cause the scale and

position to be marked

as dirty, allowing us

to move an object

that might otherwise

ignore even the

transform update. One

example of this is the

ParticleEmitterNode

object, which we will

discuss in Chapter 8,

“Mission Objects.”

| don't generally

encourage people to

use hacks, and this is

a hack, but this little

tip is really quite useful.
J

153

Part Ill Game Elements

5.3.6 Object Boxes and World Boxes

Every scene object has an object box and a world box. These two boxes serve

unique purposes.

The object box is an object-oriented box whose coordinates are relative

to the object’s centroid. The extents of this box are the non-scaled <x y z>

bounds of the shape. The purpose of this box is to provide an unscaled basis

for bounding and scaling calculations done in script.

The world box is a (world) axis-aligned bounding box. The coordinates

of the world box are real-world and do not need to be translated or scaled.

This box tells us (approximately) how much space a shape is taking up in

the world and where. It is useful for placement calculations and obstacle-

avoidance checks, among its many other uses.

We can get these useful bits of data with these methods in Table 5.5.

Table 5.5.

Methods for getting

object- and world-box

data.

A frequently seen

beginner's mistake

is to assume that the

forward vector and the

rotation vector from

the object's transform

are the same.

They are not the same,

and you should not

treat them as such.

Each of them has a

separate purpose and
use.

154

getObjectBox () Returns the six-element floating-point vector representing
this object’s object box. The first three values represent the
lower left corner, and the latter three values represent the

upper right corner.

getWorldBox () Returns the six-element floating-point vector representing
this object's world box. The first three values represent the

lower left corner, and the latter three values represent the
upper right corner.

getWorldBoxCenter () Returns the three-element floating-point vector representing

the center of this object’s world box.

5.3.7 The Forward Vector

It is frequently important to know which direction a shape is facing. We can

retrieve this information by asking for the object’s forward vector.

The forward vector is a normalized vector representing the orientation of

the shape’s y-axis relative to the world axes (in Torque, +z is up, +y is for-

ward, and +x is left). The getForwardVector() method provides a quick

means of retrieving this value.

splayerFacing = %player.getForwardVector();

echo (“Player’s forward vector is:” SPC %playerFacing);

Torque Core Classes

5.4 GameBase and GameBaseData

5.4.1 GameBase Features

GameBase features include the following:

¢ Ticking

e Datablocks

5.4.2 The Foundation Game Classes

All GameBase objects are built using datablocks; thus, it is not surprising that

the majority of what this class does is focus on datablock functions. It is also

the first object to experience ticks. This is just something to put under your

hat for now, but it is important to know. Only GameBase objects and their

children are ticked.

Datablocks are used to store static data as well as to scope many impor-

tant methods and callbacks. In order to allow us to access the data these

objects contain, we first require a method of obtaining an object’s datablock.

Of course, Torque supplies us a method to do this. Given that we know the

object for which we want the datablock, we can get that object’s datablock as

follows.

smyDataBlock = %obj.getDatablock();

Additionally, we may change an object’s datablock at any time with a call like

the following.

S$0b].setDatablock(Blockman2);

What exactly does changing the datablock do for us though? Well, the

obvious thing it does is change the source of subsequent datablock data

retrievals; i.e., datablock values retrieved (by us and by the engine) in the

future will get their content from the newly specified datablock. This is pretty

cool, but there is another more important (and more subtle) thing that this

does. By changing the datablock of an object, we are effectively changing that

object’s namespace (the console method calling chain). Consider the follow-

ing code.

function BlockMan::doit(SDB) {

echo(“In BlockMan::doit(” SPC *DB SPC “)”);

}

Chapter 5

155

Part I]

156

Game Elements

function BlockMan2::doit{ %DB) {

echo(“In BlockMan2::doit(” SPC $DB SPC “)”);

}
obj] = new Player(BlockMan) {

//

he

$o0bj}.doit(); // Calls BlockMan::doit

sobj}.setDatablock(BlockMan2);

$obj}.doit(); // Calls BlockMan2::doit

If you stop and think about it, this is an extremely powerful tool and can be

used for some heavy-duty coding. Note also that objects that render a shape

will render the new shape as defined by the new datablock, so this is a quick

way to change an object’s entire mesh.

5.5 Summary of Core Classes

This is a rather short chapter, but it is very important because these classes

form the basis for almost all scripting that we will do in the future. In almost

every gameplay-related script we write, we will touch at least one of these

classes’ features.

Chapter 6

Basic Game Classes

6.1 Shape and Interiors

In this chapter, we will discuss all of the fundamental classes that are used

to create models in our game world. Excluded from this discussion are any

classes that are normally used as avatars.

Torque supplies a large set of classes used to display two fundamental

categories of models: shapes and interiors.

6.1.1 Shapes

In TGE, shapes are normally nonstructural objects. More exactly, shapes

should not be used to represent an object that must have both an interior

and an exterior that can be accessed via another shape. The reason for this is

simple: shapes have only exterior collision.

Shapes are created and rendered either with the children of ShapeBase or

ShapeBaselmageData, or with TSStatic.

In this chapter, the two children of ShapeBase that we will be discussing

are the following.

¢ Item. Used to represent interactive items like coins, pickups, and power-

ups.

¢ StaticShape. Used to represent objects that are stationary or have limited

movement/interaction capabilities.

We will defer a discussion of the following ShapeBase children classes until

the next chapter because they are normally used as avatars and require special

attention.

e Player

¢ Vehicle, WheeledVehicle, HoverVehicle, and FlyingVehicle

Additionally, we will discuss the following high-level topics in the next

chapter.

° GameView/POV. We discuss how the interactions of several classes com-

bine for our GameView and determine the point of view.

¢ Inventories. A nearly universal construct is the inventory. We will discuss

the basic elements of the one that is included with this guide.

157

Part Ill Game Elements

6.1.2 Interiors

Interiors are used to display models that represent any structural object,

including such things as buildings, bridges, walls, and other large structures.

The motivation for this name comes from the fact that these objects can have

an actual inside. This type of model supports arbitrary collision with both

inside surfaces and outside surfaces.

The class used to represent interiors implements a standard BSP collision

scheme. Thus, it supports dividing models/meshes into n-dimensional convex

partitions that can be entered. Additionally, interiors can use portals to cull

hidden geometry.

Some other features supported by interiors are self-shadowing, terrain

. shadowing, and light maps. Interiors will self-shadow and, when the relight-

Engine. ing phase executes, the engine will back a shadow texture into the terrain

is based on the location of each interior. Interior shadowing and lighting

are accomplished with the use of precalculated light maps. The basic

exporter produces pretty nice light maps. Additionally, there is a radiosity

exporter available for creating smoother lighting.

Most of what you will need to know about interiors is art-based and

includes such things as placing portals correctly, creating BSP-acceptable

geometry, adding lights and textures, and preparing multiple level of detail

(LOD) versions of meshes.

Interior lighting and

shadowing is pretty

nice, but if you wish to

have more control over

this, and if you want

these lights to affect
nonstatic objects like

the player, you should

pick up the Torque

Lighting Kit for TGE or

consider moving up to

the Torque Shader

6.2 ShapeBase/ShapeBaseData

These are the root classes in the ShapeBase class hierarchy. The ShapeBase

class itself cannot be used to create objects in the world. It should be consid-

ered a “virtual” class. Instead, use the children classes. ShapeBaseData is the

datablock class associated with ShapeBase.

6.2.1 ShapeBase and ShapeBaseData Features

ShapeBase and ShapeBaseData have the features shown in Table 6.1. As can

be seen, these classes have a significant burden for providing shape function-

ality. As a side effect, ShapeBase-derived objects have a significant network

weight. Thus, if you do not need any of the features in Table 6.1 for a shape,

consider using TSStatic instead (see Section 6.5).

6.2.2 Rendering

In order to be rendered, a shape must provide a model (mesh). Additionally,

we might wish to allow a shape to be cloaked and/or to render an environ-

158 mental map. These features are provided by the ShapeBaseData datablock.

Basic Game Classes Chapter 6

Category : Features Table 6.1.

Rendering e Environmental mapping

¢ Cloaking

e Fading

¢ Hiding

e Skinning

Damage « Damage level tracking

« Damage states

Self-repairing

Invincibility

Damage flashes and whiteouts

Explosions

Energy Energy level tracking

Recharging

Physical Parameters e Mass

e Density

e Drag

e Velocity

e Impulses

Eye Transforms

Camera Settings e Field of view

¢ Point of view

* Range and angle limits

Animations e Four threads

Sound Four independent threads

Mounting e Shape-to-shape

e Image-to-shape
In the following example, we are creating a StaticShapeData datablock

named “FadeEgg”:

// Fade Egg from Rendering

datablock StaticShapeData(FadeEgg)

{
category = “LessonShapes”

shapeFile =

\~/data/Shapes/Lessons/GeneralLessonShapes/egg.dts” ;

yi
159

Part Ill

————_

If you choose

to not specify a

cloakTexture

and then you cloak

a shape, that shape

will get a default

white texture. This is

actually pretty nice

and gives a reasonable

cloaking effect. You

might consider trying

this before working

too hard on a special

texture for cloaking. Re ———_ _

160

Game Elements

Later, we can create an instance as follows.

S$theEgg = new StaticShape {

datablock = FadeEgg;

he

Environmental Mapping

If we set the “emap” datablock parameter to true, the shape will use the envi-

ronmental mapping texture specified for the sky object, if it was specified.

Cloaking

ShapeBase-derived shapes have the ability to cloak. When a shape is cloaked,

it is reskinned with the cloakTexture specified in its datablock. Further-

more, this skin is rendered at a fixed overall alpha (specified in the engine).

ceed, however, if the fixed alpha used by the engine is not low enough,

you can further reduce it by using a cloakTexture with an alpha chan-

nel. Shapes that are cloaked behave just like uncloaked shapes in all other

respects.

In order to cloak an object, first define a datablock with a cloak texture,

as follows.

eS) The cloakTexture does not need an alpha channel for the cloak to suc-

datablock StaticShapeData(CloakEgg) {

category = “LessonShapes”;

shapeFile =

“~/data/Shapes/Lessons/GeneralLessonShapes/egg.dts”;

cloakTexture =

\~/data/Shapes/Lessons/GeneralLessonShapes/testskin. png” ;

};

Then, having created an instance, enable cloaking as follows.

StheEgg.setCloaked (true);

Fading and Hiding

ShapeBase-derived shapes have the ability to fade in and out of view as well

as to be hidden. While a shape is fading in or out, its collision mesh is still

active. In fact, once a shape is completely faded out, its mesh is still active

and can still be collided with. You must hide an object to disable its collision

mesh.

Basic Game Classes

// Fade this egg from view, over a 1.5 second period,

// starting immediately

StheEgg.startFade(1500 , 0, true);

// Schedule the egg to be ‘hidden’ in 1.6 seconds

// {disables collision mesh)

StheEgg.schedule(1600 , setHidden , true);

Skins

ShapeBase-derived shapes are allowed to have multiple skins. In order to use

this feature, the skins to be used for a shape must follow some simple rules.

First, a texture (skin) is required to group the skins for this shape. It has a

name of the form base.setName. suffix.

® base. The engine looks for this special prefix and uses it to ‘group’ textures

by setName.

* setName. This string identifies the skins that are in this group.

® suffix. This is any acceptable TGE image format: PNG, JPG, etc. (see

Appendix for complete list).

Subsequently, any textures to be included in the set for multiskinning must

have names of the form setName. skinName. suffix.

e skinName. This is the optional part of the skin name and is used in the

setSkinName() method (see below). This name can be any arbitrary

string you wish to use. Skin names are stored as tags.

For example, if you wish to have a shape with three skins, you could use the

following textureNames.

base.skin.png // Apply this texture to the shape.

skin0.skin.png // First Skin

skinl.skin.png // Second Skin

skin2.skin.png // Third Skin

Subsequently, we could change the skin for a shape as follows:

Sobj.setSkinName (“skin2”); // automatically converted to a tag

// OR

$0bj.setSkinName(‘skin2’); // The tag itself.

The question will arise, “Can I do this for multiple textures on the same

mesh?” Yes, you can have multiple texture groups on one mesh, but when you

Chapter 6

161

Part Ill

162

Game Elements

flip one texture, all the other textures will revert to their base texture. So, if

you need to change multiple textures, you might want to consider using JFLs

(image file lists) as an alternative to multiskinning. In fact, IFLs may be better

anyway if:

¢ you wish to animate a texture rapidly, and/or

* you wish to change the texture on only a small part of the shape, and

¢ you are willing to give up one animation slot (per playing IFL).

6.2.3 Damaging, Disabling, Destroying,
and Exploding!

ShapeBase-derived objects can be damaged, disabled, and eventually

destroyed. Upon destruction, a shape may continue to render, or it may

explode and leave behind debris.

Damaging

To allow a shape to take damage, we must define some key values in our

datablock:

datablock StaticShapeData(SelfHealingBlock) {

//

maxDamage = 100;

disabledLevel = 80; // Dasabled at 80 or greater points

destroyedLevel = 100; // Destroyed at maxDamage

repairRate = 0.05; // Repair @ 1.6 points per second

};

What we have said here is that this object can take up to 100 damage points

and that it should be considered disabled at 80 points and destroyed when it

hits 100. If we wished, we could set either of these values higher than max-

Damage, which is the same as saying “cannot be disabled” or “cannot be

destroyed,” respectively. The last value repairRate tells the engine to apply

0.05 points of “repair” every tick until damage equals zero.

Setting Up Repairs

This seems pretty simple so far, but a few things need to be clarified. Although

we have specified values for damage, our shape will not do anything auto-

matically. We are responsible for applying damage, changing the damage state

of the shape, and setting the repair rate. Until the repair rate is set by calling

setRepairRate(), a shape will not self-repair.

Basic Game Classes Chapter 6

Thus, when we create our object, we want to use setRepairRate ()

to enable self-repair. An ideal place to do this is in the shape’s onAdd()

callback:

function SelfHealingBlock::onAdd(SDB , %theShape) {

%theShape.setRepairRate(%*DB.repairRate);

Damaging

Later, we may wish to apply damage to our shape. To do so we would use

code similar to the following.

StheShape.applyDamage(%someDamage);

Repairing Manually

In addition to a damage method, a method is supplied to repair a shape as

follows.

stheShape.applyRepair(tsomeRepair);

There is, however, a slight trick to making this work. If we have chosen to

allow our shape to self-repair (by calling setRepairRate() with a nonzero

value), we cannot apply repairs at a greater rate than the specified rate.

In other words, if you want to repair an object that is able to self-repair,

you will need to do the following.

// Turn off self-repair

StheShape.setRepairRate(0);

// Do the repair

StheShape.applyRepair(%someRepair);

// Turn self-repair back on

StheShape.setRepairRate (StheShape.getDatablock().repairRate);

Of course, if a shape is not automatically repairing, then we simply call

applyRepair (), and we're good to go.

Damage States

It is up to us (through the use of scripts) to take responsibility for tracking the

damage level of our shape and for setting its damage state. What is a damage

state, you ask?
163

Part Ill Game Elements

A normal shape can be in any one of three (damage) states: enabled, dis-

abled, or destroyed. A sample method to deal with this might look like the

ES following:

In addition to the

three standard function ShapeBase::determineDamageState(%theShape) {
states, players $curDamage = %StheShape.getDamageLevel ();

(which we have sdisabledDamage = %theShape.getDatablock() .disabledLevel;
not yet discussed) 2. = 2 . can also be “dead,” sdestroyedDamage stheShape.getDatablock () .destroyedLevel;

which is equivalent

to being disabled and

destroyed.

 if(ScurDamage >= %destroyedDamage) {

stheShape.setDamageState(Destroyed);

}
else if(*curDamage >= %disabledDamage) {

StheShape.setDamageState(Disabled);

}

else {

stheShape.setDamageState(Enabled);

Invincibility

It is possible to make a shape invincible, either permanently or temporarily. To

do so permanently, we use the isInvincible keyword in the datablock.

datablock StaticShapeData(InvincibleBlock

SelfHealingBlock) {

//
isInvincible = true;

};

If we only want this invincibility to be temporary, we can use the set-

InvincibleMode () method.

stheShape.setInvincibleMode(time , speed);

This method works as follows.

e The shape on which this is called will be invincible for a period of time
specified by the floating-point value time, as measured in seconds.

e The screen will flicker blue if it is the control object that has been made
invincible.

The flickering effect is used to indicate to a player that his or her avatar

is invincible. Furthermore, this flicker rate will change and the flicker will

164 become increasingly translucent as the time elapses.

Basic Game Classes Chapter 6

The rate of this flicker is controlled by the floating-point value speed.

apeed can be between 0 and 1. If it is set to 0, there is no flickering. If it is set

to 1, the flickering is very fast. Generally, lower values are nicer.

Postdestruction Rendering

This leads us to a final damage topic, which is postdestruction rendering; that

is, does the shape render subsequent to destruction? This, too, is determined

by the datablock.

datablock StaticShapeData(ExplodeGears) {

//

renderWhenDestroyed = false;

};

In this instance, we have instructed the engine to stop rendering the shape

when it is in the “destroyed” state. Unfortunately, there is a catch. Even if

the engine stops rendering the shape, the collision box will remain active;

i.e. collisions will still happen. Therefore, if you wish to entirely remove the

object from interaction, you should either delete it subsequent to destruction

or hide it.

Damage Flashes and Whiteouts

What are damage flashes? Well, in your game, the player may at some time

take damage or be blinded by a bright light. In order to express this concept to

the person playing your game, you can use the following console methods.

// Show red-haze to imply massive damage to player

$cam = Splayer.client.camera;

// We need the camera ID to do flashes

Scam.setDamageFlash{ 1.0);

// Show Whiteout to imply slight and temporary blinding.

Scam = Splayer.client.camera;

// We need the camera ID to do whiteout

%tcam.setWhiteOut(0.5);

These two effects can be applied together.

It is important to understand that these methods must be called on the

camera for the effect to be shown. Calling this on other shapes has no effect.

Lastly, there is also a blackout function in the engine, but it is not hooked

up with a console method. However, if you have the source code, hooking this

up would be as easy as 1...2...3.
165

Part il

166

Game Elements

Explosions

If you have specified an explosion datablock for your shape and the shape is

destroyed (setDamageState() is called with the argument Destroyed), the

shape will create an explosion object at the current location of the shape. The

explosion will then play and delete itself when finished. It is that simple.

In addition to the explosion field, there is an underwaterExplosion

field. This field is used to specify an alternate explosion that should be played

when the shape is destroyed underwater. If no underwaterExplosion is

specified and the shape is underwater, then the normal explosion will be

played.

datablock StaticShapeData(ExplodeGears) {

//

explosion = “GearsExplosion” ;

underwaterExplosion = “GearsUnderwaterExplosion” ;

};

Debris

As with explosion datablocks, if a debris datablock has been specified for

your shape and the shape is destroyed, the shape will create a debris object at

the current location of the shape. Debris represents the refuse left behind by

a destroyed shape. Debris can behave in a wide variety of ways and therefore

merits its own discussion. If you are interested, please skip ahead to Chapter

ll, “Special Effects.”

datablock StaticShapeData(ExplodeGears) {

//
debris = “GearsDebris”;

};

6.2.4 Energy

ShapeBase-derived objects can have energy. This energy can be used for vari-

ous purposes such as powered movement, weapons, vehicles, etc. Initially,

shapes start out de-energized (energy level == 0). We may choose to provide

an initial charge at creation time and/or to enable recharging. Before we can

do either of these, however, we must set up the datablock as follows.

datablock StaticShapeData{ FireTube) {

//

maxEnergy = 20;

rechargeRate = 0.05; // 1.6 points per second

ba

Basic Game Classes Chapter 6

The above datablock tells the shape that its maximum energy is 20 points and

that, when the energy is below maximum, it will recharge at a rate of 0.05

points per tick (about 1.6 points per second). As with self-repair, we need to

enable recharging with a method call.

To give a shape an initial charge, and then to enable recharging, we can

do the following.

function FireTube::onAdd(%DB , %theShape) {

// Start with maxEnergy

%theShape.setEnergyLevel(%*DB.maxEnergy) ;

Unlike with

self-repair and

manually applied

repairs, we may

manually add energy

to our shape even if it is

recharging.

// Enable recharging

%theShape. setRechargeRate(%*DB.rechargeRate) ;

6.2.5 Physical Parameters

Being in the world, most shapes will need the ability to interact. In real-world

terms, interactions are based on physics. As this is only a simulation of reality,

a minimal set of physical parameters is supplied for all shapes via a shape’s

datablock. All shapes have the concept of mass, density, and drag. These can

be considered unitless, but it is often nice to treat mass and density as metric

units (kilograms and kilograms per cubic meter, respectively).

_ datablock PlayerData(BlockManPlayer) {

//

mass = 90; // Kilos

density = 10; // Kilos/cubic meter

drag = 0; // Unitless ‘air’ resistance

}i

Applying a velocity

to a StaticShape will
do you no goad. It is

static and can only be

moved by using the

setTransform()

Velocity

At any time, a shape may be in motion. Thus, it is handy to have a means of

getting and setting the current velocity of a shape.

sobj.getVelocity();

$obj.setVelocity(velocity);

impulses

If we wish, we can apply an impulse to any shape with mass. An impulse is

an application of force, causing an instantaneous change in velocity.

167

Part Ill Game Elements

Take a look at the following example to see how we apply an impulse:

// Give this player a whack (10x mass) straight up

sobjectMass = %player.getDatablock().mass;

impulseVector = vectorScale(“0 0 1” , %SobjectMass * 10);

tplayer.applyImpulse(%obj.getWorldBoxCenter() ,

%SimpulseVector);

Varying Impulse Position

_ \The astute reader will notice that the impulse method takes a position vector.

(| oP The question that arises in the curious mind is, “What happens if I apply

Applying impulses \ a an impulse to a position that is not in the center of a shape?” The answer:

to StaticShapes f Results may vary.

and to items with the The reason to allow an off-center impulse is to allow us to spin an object.

static parameter However, only vehicles will spin. All other classes will ignore any offset and

treat the impulse as if it is applied to the shape’s centroid.

set to true, will do

nothing. These shapes

cannot be moved by

impulses. 6.2.6 Eye Transforms and Vectors

In addition to the transform and the forward vector inherited from Scene-

Object, ShapeBase and children provide the following positions and vectors.

e Eye point. A point in three-space, representing the position of the shape's

eye.

e Eye vector. A vector representing the pointing direction of the shape’s eye.

¢ Eye transform. A transform, not for the shape but for the shape's eye.

Each of the above quantities are available if the mesh used by the shape has

defined a skeletal node with the name “eye.” To acquire these quantities, we

use the following methods.

// Eye Point

echo(%obj.getEyePoint());

// Eye Vector

echo(%obj.getEyeVector());

// Eye Transform

echo(%obj.getEyeTransform());

168

Basic Game Classes

It is possible to call these methods on a shape without an eye node, as the

engine will use the shapes centroid as the eye in this case. Just be aware

that this is what is happening.

6.2.7 Camera Settings

The ShapeBase camera settings are part of a larger discussion that encom-

passes the GameView and the player’s point of view, so we will come back to

this class when we talk about those topics.

6.2.8 Animations

ShapeBase-derived shapes have the ability to run up to four simultaneous

animations. These animations can be any of the supported animations:

* nonblended (absolute) skeletal,

¢ blended skeletal,

e image file list, and

e visibility.

These animations are applied in the order of the threads they occupy, which

is important to keep in mind for blended skeletal animations.

Cyclic Animations

TGE supports the concept of a cyclic animation. A cyclic animation is nothing

more than an animation that cycles. When an animation cycles, it progresses

as follows: frame 0, frame 1, ... frame n, frame 0 ..., ad infinitum until

paused or stop.

Playing

To play an animation, we must have the name of the animation and a free

thread to play it in.

$obj.playThread(0 , “someAnimation”);

In this sample, we’ve decided to play an animation named “someAnimation”

in thread 0. As soon as this statement is executed, the animation will begin

to play and will continue to play until it hits the end of its sequence. Upon

hitting the end of its sequence, an animation can do one of two things. If it is

noncyclic, it will stay in the “playing” state and hold on the last frame of the

animation. If it is cyclic, the animation will start over at the first frame of

the animation.

 ————__ VS

Chapter 6

 We have not

talked about

POV yet, but if you

are at all familiar

with games, you will

already Know that a

camera can be in Ist

POV (looking through

the eyes of the

player) or in 3rd POV

{somewhere external

to the player). The

above eye quantities

are all relative to a

Ist POV viewpoint,

so if your game is

running in 3rd POV,

all three quantities

will be unchanged

by the movement of

the camera; i-e., the

eye will still be in its

Ist POV position, and

the eye vector will not

track the camera. To

learn more about this

topic, see the camera

discussion in Chapter

7, “Gameplay Classes.”

if there were already

an animation present

in thread 0, the playing

script shown would

normally stop that

animation and start

the new animation.

For the exceptions,

see “Animation

Oddities”.

169

Part Ill

Stopping an

animation resets

the joints affected

by this animation to

their pre-animation

positions; i.e., the

animation transforms:

are no longer applied.

You need to do this if

you want to re-pose a

noncyclic thread that

has reached its end.

170

Game Elements

Direction

Animations have the concept of a direction. They can be played forward or

in reverse. All animations start playing in the forward direction. To change an

animation’s direction, we use the method below.

%$obj.setThreadDir(0, true); // Play thread 0 FORWARD

// OR

sobj.setThreadDir(0, false); // Play thread 0 REVERSE

Pausing and Stopping

So far, we know how to play and reverse a thread, but what if we need to

pause our thread or stop it entirely? Both of these options are available to

us. We can toggle pause; i.e., if the thread is playing it will pause, and if it is

paused it will start playing again.

S$obj.pauseThread(0); // Toggle pause for thread 0

We can also stop an animation.

sobj.stopThread(0); // Stop the animation in thread 0

Animation Oddities

It is worth noting that, when using the animation methods to control ani-

mation threads, there is some latency involved. So, you may run into some

strange issues while playing threads.

Noncyclic Threads Remain in Play State at End of Sequence

When a noncyclic animation is played, it eventually completes. However, TGE

does not automatically stop the thread. Instead, the thread remains in the

“play” state. If you have a noncyclic thread that you wish to “re-play,” you

would think you could simply type:

sobj.playThread(0 , “someAnimation”);

Unfortunately, this will not work. Nor will the following.

sobj.stopThread(0);

$obj.playThread(0 , “someAnimation”);

Basic Game Classes

Instead you’ll need to do one of two things. You can schedule a stop after

starting the thread, as follows.

sobj.playThread(0 , “someAnimation”);

Sobj.schedule(time , stopThread, 0);

// time > animation length in ms

Otherwise, you’ll have to delay the restart as follows.

sobj.stopThread(0);

%obj].schedule(100 , playThread, 0 , “someAnimation”);

Damage Animations

All ShapeBase-derived objects will automatically play two different animation

sequences based on the shape’s damage state.

“Visibility” Sequence

The first of the two sequences that is auto-played is the “Visibility” sequence.

This should be a blended animation. It will assume one of two positions; i.e.

it is either off or on and does not actually play an animation sequence. When

the shape’s damage state is not destroyed, the shape plays position zero (0)

of this sequence. When the shape is destroyed, it plays position one (1) of the

thread.

“Damage” Sequence

The second of the two sequences that is auto-played is the “Damage” sequence.

This sequence can be blended or nonblended. This thread plays as follows.

If damageLevel > = destroyedLevel,

If damageState == “Destroyed,” play “Damage” sequence position

zero (0).

If damageState != “Destroyed,” play “Damage” sequence position one

(1).
IfdamageLevel < destroyedLevel, play thread at position damageLevel

/ destroyedLevel.

In short, this sequence advances as damage is accumulated, until the shape is

destroyed. This thread/sequence is used to create a damage effect on shapes

and may involve IFLs, geometry animation, visibility animations, etc.

—$_—$—$

Chapter 6

yO
” By now, you've
seen the method

schedule()a

few times and have

probably begun

to wonder what

it is. Although we

will discuss this

in Chapter 10,

“Gameplay Scripting,”

let me summarize

what it is now. The

schedule () method

is used to schedule

either a function or

a method call in the

future. The variety we

have used thus far

schedules methods.

In this example, we

scheduled a method

named stopThread

to execute in time

milliseconds. This

method will be called

on the object obj

that scheduled it and

will be passed a 0.

That's it.
171

Part Il

Figure 6. 1a.

Tower with mount0O node.

Figure 6.1b.

Individual shields with

mountPoint node.

172

Game Elements

6.2.9 Sound

ShapeBase-derived objects have the ability to control up to four simultaneous

sound threads. Sounds themselves are declared using audio profiles (AP) and

audio descriptions (AD) (see Chapter 11, “Special Effects”). Playing a sound

declared with the audio profile named “SomeAudioProfile” is as simple as the

following.

%obj.playAudio(0 , SomeAudioProfile);

How this sound plays is up to the AP and the AD. It may play forever or it

may play only once. However, if we wish to stop this sound from playing, we

can do so with the following code.

%obj].stopAudio(0);

6.2.10 Mounting

ShapeBase-derived shapes have the ability to mount other shapes and

ShapeBaselmages. In total, eight shapes, eight ShapeBaseImages, or any com-

bination of up to eight total can be mounted to any single shape.

Mounting is tracked through the use of mount slots. Mount slots should

not be confused with mount nodes.

e Mount slots are the indices into the shape’s mount list.

¢ Mount nodes are positions on the shape corresponding to named joints/

nodes in the model. These names are mount0 ... mount3l (TGE supports

a maximum of 32 mount nodes).

To clarify the difference between nodes and slots, let’s look at the images in

Figure 6.1 from one of my own game

mountO prototypes. In the game, eight shields

; are attached to this tower, all of them

attaching to the mountO node (Figure

6.1a). In Figure 6.1b, you can see three

of the shields. In Figure 6.ic, three of the

shields have been attached to mounto.

mountPoint mountPoint mountPoint

Basic Game Classes

The important takeaway is that,

although all three shields are attached

to the same node (mountdO), they are

each in their own slots. Assuming

they were mounted from innermost

to outermost shield, those slots would

be Slot O—Inner Shield, Slot 1—Mid-

dle Shield, Slot 2—Outer Shield.

Things to Know

You should be aware of the following.

¢ Mounted shapes and images will translate and rotate with the node that

they are mounted to.

e If amount node is animated, the shape/image mounted to that node will

follow the node through its animation.

¢ Multiple objects/images can be mounted to the same mount node but not

in the same slot.

e Images do not have collision meshes and will therefore not collide with

objects when the shape they are mounted to moves.

e® Shapes that are mounted to other shapes retain their collision meshes.

There is a pretty hefty set of console methods dedicated to dealing with

mounting tasks. We will not be covering them all here, but never fear, they

are all listed in the “Console Fields and Methods” Section of Appendix A with

descriptions that should clarify their purposes. For now, we’ll do a simple

example showing what it takes to mount a shape to a shape, and then an

image to a shape.

Mounting Shape-to-Shape

In the following examples, we will be discussing two shapes, shapeA and sha-

peB. In all instances, shapeB will be mounted onto shapeA.

For the mount to succeed, shapeA must have a numbered mount node

(i.e., mountO...mount31) defined in the DTS file. Additionally, shapeB must

have a node named “mountPoint” (also defined in the DTS file). Given this,

mounting is as simple as the following.

$shapeA.mountObject(@shapeB , 10);

Once this code executes, %shapeB should now be attached to %shapeA at

mount node 10. However, if shapeA does not have a mountl0 mount node,

or if shapeB does not have a node named “mountPoint,” then the mount will

Figure 6.1c.

Chapter 6

Shields mounted to tower

at mounto.

173

Part JII

174

Game Elements

probably either be shapeB center to shapeA center or shapeB center to shapeA

foot (this happens with bad mounts to the player).

Assuming that the mount worked, shapeB will now translate and rotate

with shapeA’s numbered mount node. This means that any translation or

rotation of the numbered mount node (including those caused by anima-

tions of the node) will rotate and translate shapeB. Additionally, shapeA’s

collision box remains active and will record collisions.

Well, that’s all fine and dandy, but some time in the future, we may

wish to detach these two shapes from each other. To do this, simply use the

following code.

sshapeA.unmountObject (sshapeB);

Mounting Image-to-Shape

In the following examples, we will be discussing the mounting of a Shape-

BaseImageData datablock (Image) to a ShapeBase object (Shape). We will

refer to the Shape as shapeA and the Image as imageA. To be absolutely clear,

imageA is being mounted to shapeA.

As with shape-to-shape, shapeA must define a numbered mount node

(i.e., mountO...mount31) in its DTS file, and imageA must define a mount

node named “mountPoint.” As an additional requirement, the datablock defi-

nition for imageA must specify which numbered node in shapeA it will mount

to. In other words, every ShapeBaseImageData datablock predefines which

numbered mount node it can attach to.

Gatablock ShapeBaseImageData(imageA) {

//

mountPoint = 15; // ONLY mounts to mount mode 15

h;

Having properly made our DTS files and having declared a datablock

for imageA with a mountPoint field, we mount the Image to the Shape as

follows.

// Mount imageA to shapeA on mount mode 15,

// using slot 0 (of 8)

$shapeA.mountImage(%imageA , 0);

If you examine this code closely, you will notice three things.

First, imageA is being mounted to shapeA.

Second, when we called mountImage(), we passed it the name of the

Image datablock as the first argument. Remember that Images are datablocks,

and datablocks each have a unique ID. Also, remember that TGE can use

Basic Game Classes

either IDs or names. Thus, as long as the name is unique (as it is for all data-

blocks), you are guaranteed to get the proper object, which is in this case the

imageA datablock.

Third, the second argument to the mountImage() method is 0. When

mounting an image to a shape, we must specify the slot that the mounting

will be recorded in. This is important because, if by some chance you mount

two images to the same shape and the second image uses the same slot as the

first image, the first image will be dismounted. Images can be mounted to the

same numbered node on a shape, but the mount information must be tracked

in different mount slots.

Finally, to detach imageA from shapeA, we use the following code.

sshapeA.unmountImage(%SimageA);

6.2.11 Miscellaneous—CRC and aiAvoidthis

ShapeBaseData provides a couple of miscellaneous fields. The first is “com-

puteCRC.” This field, if true, tells the engine to do some error checking when

loading this shape. If the error checking fails, we will get an error message

complaining that the shape could not be loaded, and the game will fail out to

the menu. Why do this? Well, for one thing, this ensures that the server and

all clients are using the same version of a shape. The CRC (cyclic redundancy

code) is calculated on the server, and thus if a client in a multiplayer scenario

has a nonmatching CRC, that client will fail out.

The other miscellaneous field is named aiAvoidthis and has no func-

tion at this point. You may use this in your scripts to indicate that an AI should

avoid the object. The only benefit this has over using a server-side dynamic

field is that this field is networked, allowing clients to observe it, too.

6.3 Item and itemData

These classes are used to represent items, specifically, items that the player

will interact with. These are things like weapons, power-ups, traps, mines,

etc. Item and ItemData have all the features of their parents, ShapeBase and

ShapeBaseData.

6.3.1 Item and ltemData Features

Item and ItemData add the following features to those inherited from Shape-

Base and ShapeBaseData.

e Rendering

¢ Light emission

Chapter 6

175

Part Ill

176

Game Elements

e Physics

* Stationary (Static) + nonstationary placement

* Auto-rotation (spinning animation)

* Elasticity

¢ Velocity limits

* Stickyness

* Friction

* Gravity modification

* Collisions

* Collision timeouts

e Dynamic typing

Items are used to represent objects that are to be picked up or otherwise inter-

acted with. They are special in that they can be walked through but still signal

a collision event.

6.3.2 Item Rendering

Items add one new trick to the rendering feature set: dynamic lights!

Lights, Camera, ... Action

Items can emit light in three ways: none, constant, and pulsing. In order to

create an item with a light, specify the datablock as follows.

datablock ItemData(ConstantLightEgg) { {

//

lightColor = “1 001.0";

lightRadius = 6.0;

lightType = “ConstantLight”;

he

When an item is made from this datablock, it will emit a constant red light

with a radius of 6 world units.

The three names for the light types are NoLight, ConstantLight, and

PulsingLight.

The lighting of an item can be further modified such that, if the item is

nonstatic, it does not render a light.

datablock ItemData(ConstantLightEggStaticOnly) {

//

lightOnlyStatic = true;

be

Basic Game Classes Chapter 6

6.3.3 Item Physics

A fun thing about items is that they display all kinds of interesting physical

attributes. They can be made to stay put or move around, to rotate, to bounce,

to slide, to fall and fly at varying rates, or to float away.

Static Items

When we create an item, we can set the static field in the object (not the

datablock) to true or false.

StheEgg = new ItemData() {

datablock = “ConstantLightEgg”;

static = false;

Me

Setting this field to true tells the engine that this item will stay put once ~

it is placed. If we want to allow it to move after placement, we set static to

false. This parameter can be set in the create() method for ItemData, in

the onAdd() callback for the datablock that is used to create the item, or as

we have done above, in the object creation statement.

If we wish to change the static field later, we can do so. We can also

check the current value as follows.

if(StheEgg.isStatic()) {

echo(“This egg is static. It won’t move now.”);

Rotating Items

Items are often used to represent objects that the player is meant to pick up. A

common hint that an object is meant to be picked up is that the object rotates.

This is often seen in arcade games and first-person shooters. Thus, TGE pro-

vides the ability to cause an item to rotate. This is done by setting the rotate

field in the object (not the datablock) to true.

$theEgg = new ItemData() {

datablock = “ConstantLightEgg”;

rotate = true;

\;

The rotating state of an item can be modified at any time, and we can check

it by using the following method:

lf(%theEgg.isRotating()) {

echo(“This egg is rotating.”);

} 177

Part ill

178

Game Elements

Bouncy Items

As noted above, items can be made elastic, causing them to bounce when

dropped. The field elasticity can take both positive and negative values.

A positive value of 1 is not guaranteed to be equal to 100 percent elasticity,

due to rounding errors. Also, if you choose to use a negative value, be aware

that, if you don’t limit the velocity (see maxVelocity below}, eventually a

bouncing item will crash the engine when the instantaneous change in veloc-

ity becomes too high.

datablock ItemData(BouncyEgg) {

//

elasticity = 0.7;

\;

The datablock above will produce an item that bounces for a while then

settles down.

Maximum Velocity (maxVelocity)

Because we have various ways of causing an item to move and perhaps to

increase its velocity, because the engine does not handle very high velocities

and accelerations well, and for practical playability reasons, we need a way to

limit the velocity an item can achieve. This is done quite simply as follows:

datablock ItemData(LimitedVelocityEgg) {

//

maxVelocity = 1000; // Limited to 1000 world units / 8s

‘i

Sticky Items

It may be that sometimes we would like an item to stick when it hits the

ground. This can be achieved by making the item sticky.

datablock ItemData(StickyEgg) {

//

sticky = true;

};

An item made with the above datablock will stick to the terrain when it falls

to the ground. This overrides elasticity.

When an object sticks to the terrain, we can get both the position of the

item and the normal at that point as follows.

Basic Game Classes Chapter 6

SlastPos = smyltem.getLastStickPos();

SlastNormal = smyItem.getLastStickNormal ();

if (100000 < vectorLen(%lastPos)) {

echo(“This item did not stick yet.”);

} else {

echo(“This item stuck at: ”, %lastPos,

“ with a normal of: ”%, %$lastNormal);

hasStuck {)

Before version 1.4 of the engine, it was hard to tell if an item had stuck yet.

However, with the official release of 1.4, a new method has been provided:

$stuck = %stickyEgg.hasStuck();

This method will return true if the item has in fact stuck to something.

Sliding Items

If some velocity has been imparted to an item, or if it has fallen to the ground

in a sloped area, we may wish for this item to eventually stop sliding. TGE

provides a friction field which can be made either negative or positive.

Low values equal low friction, and high values equal high friction. A negative

value will actually cause the item to accelerate. Again, we need to use caution

with negative values; as with elasticity values greater than 1.0, a negative

friction will eventually cause the engine to crash.

Interestingly, we can use a negative friction with a maxVelocity to

create an item that stays in perpetual motion at about the same velocity.

datablock ItemData(PerpetualMotionEgg) {

//

friction = -10; // Accelerate rapidly to our limit

maxVelocity = 20; // Limited to 20 world units / 5

hi

Modifying Gravity (gravityMod)

Items have the ability to “experience” their own gravity; that is, we can modify

the way gravity affects individual items. This is done through their datablocks

as follows.

datablock ItemData(LowGravityEgg)} {

//

gravityMod = 0.25;

hi : 179

Part Ill

180

Game Elements

An item made with the above datablock will only experience one quarter the

gravity normally experienced by an item.

We can also make our gravityMod values negative. If you do so, be sure

to limit the velocity, or else the object will fly away and eventually crash the

engine. Also, such an item should be moved back to a starting point or even-

tually destroyed, otherwise it will float off and be of no use to the player.

6.3.4 Item Collisions

Items are intended to represent objects that the player interacts with in the

world, usually by running over them and picking them up.

Consider that eventually we may wish to drop items that we have picked

up. We’ll cover this in all its gory detail in the “Inventories” section in Chap-

ter 7, but basically we create a new instance of the to-be-dropped object and

then drop it where the player is or toss it away from the player.

Now, consider that, if we don’t have a way to disable the collision fea-

tures, we’]l just pick the object up again as soon as it is created. Thus, colli-

sion timeout for items exists.

Collision Timeout

Individual items can be told to ignore collisions with one specific object for a

short period of time. We simply do the following.

SitemHandle.setCollisionTimeOut (%objectTolIgnore });

In the above example, we’ve told the item represented by %itemHandle

to ignore collisions with %objectTolIgnore. It will honor this request for

approximately a half second and then re-enable collisions with the to-be-

ignored object.

6.3.5 Items and dynamicType

A dynamicType field is specified for StaticShapeData and [temData data-

blocks. In both cases, it provides the ability to further differentiate an object’s

type by providing a value that will be added to the result of get Type () when

called on this object.

If you’ll recall our earlier discussion of the getType() method (Section

5.1.4), you'll remember that each mission-placeable object has an associated

bit-mask. We use these masks to differentiate objects when doing ray casts,

radius searches, etc. The proper way to deal with dynamicType is to specify

a new mask (in objectTypes.h) and export it to the console (in main.cc). Sub-

sequently, you can use this value in dynamicType, and then getType() for

these objects (and their children) will also have your new bit position set.

Basic Game Classes Chapter 6

Having said that, if your purpose is only to use this in scripts, you can

specify new $TypeMasks:: values in script and use them. However, the besty

and safest way to do this is within the engine framework, where you will

benefit from the checking your compiler does for you.

_— Too '
You may be

6.3.6 Maze Runner Lesson #3 (90 Percent Step|— “mounting an tern
Game Coins to some other shape.

. . . . oo. If you try this, you
In this lesson, we will examine the game coin’s datablock definition. Later, we will discover that it

will implement scripts to pick up these coins, but for now, all we need to do is Not supported. In

is talk about the coin’s geometry, the datablock definition, and the creation fact, items cannot
be mounted to script.
other shapes, but

. . other shapes can be

Copy Requir ed Files mounted to items.

From the accompanying disk, please copy the file \MazeRunner\Lesson_003\ This is quite useful,

coins.cs into \MazeRunner\prototype\server\scripts\MazeRunner. as such mounted

Now, edit the function onServerCreated() in the file \MazeRunner\ shapes can temporarily

prototype\server\game.cs to look like the following. shield an item from
contact and thus from exec (“./GPGTBase/loadGPGTBaseClasses.cs”); // MazeRunner \ /

exec (“./MazeRunner/coins.cs”); // MazeRunner

Please note that, until this step, the directory \MazeRunner\prototype\server\

scripts\MazeRunner did not exist, so you need to create it yourself.

Coin Geometry

The geometry for this coin is very simple and can be found in the file \Maze-

Runner\prototype\data\MazeRunner\Shapes\Items\coin.ms3d”, where we

copied it earlier. If you load the file in MilkShape 3D, you will see that it is

nothing more than a thin disk. It has one render mesh and no collision mesh.

Because this model is used for an item, a collision mesh will automatically be

generated by TGE.

The skin was generated using Ultimate Unwrap 3D. It’s simple and does

the job. Now, all we need is a datablock and a creation script, onAdd().

The Coin Datablock

The datablock for our coins is very simple. If we look at the file we just cop-

ied, we will see the following datablock definition.

datablock ItemData(Coin : BaseItem) {

shapeFile = “~/data/MazeRunner/Shapes/items/coin.dts”;

category = “GamelItems”; 181

Part Ill

182

Game Elements

i

sticky = true;

lightType = NoLight;

mass = 1.0;

respawn = false;

The coin item has the following attributes.

It is an instance of Item (just to be clear about this).

It is derived from Baseltem (there are base datablocks for all of the classes

we discuss in this guide).

We'll be able to find this object under Shapes/Gameltems in the Creator
menu.

It is sticky and will stay put when it hits terrain or an interior.

It does not emit light.

As a rule, I never create a massless object. This avoids any future difficul-

ties should I choose to apply an impulse to the shape. So, this coin gets an

arbitrarily chosen mass of 1.

When this coin is picked up we don't want it to be respawned. So, we set
the field respawn to false. This won't mean anything to you yet, but

when we discuss the Simple Inventory sytem in Chapter 7, “Gameplay

Classes,” this will become clear.

The Coin onAdd ()

We have mentioned callbacks only briefly thus far, and we will discuss them

in Chapter 9, “Gameplay Scripting.” For now, just know that all SimObject

instances and all instances of children of SimObject call the onAdd() callback

after the object is created and initialized.

Later, when we write the scripts to place objects, it will become clear that

we want objects to stay put when they are placed. Coins have the option of

being static (don’t move on their own), or nonstatic (affected by gravity and

other forces). Therefore, we need to force the coin to be static by making a

suitable onAdd() callback. Find the following code at the end of the file we

just copied.

function Coin::onAdd(%DB , %Obj) {

}

Parent::onAdd(SDB , %Obj);

%$O0b)].static = true;

$O0bj.rotate = true;

The callback does the following.

Basic Game Classes

e Calls the Parent:: version of this callback to allow it to do any work it

needs to do (optional and based on your design methodology).

e Sets the object as static. Now, it won't fall (due to gravity) or be affected by

impulses.

e Makes the coin rotate. Now the render code will rotate the coin. Please

note that this only rotates the render mesh, not the collision box that TGE
generates.

Testing

To verify that our changes worked, you can:

. restart the prototype,

. open the “Maze Runner” mission,

. start the Creator,

. look under Shapes and find the folder Gameltems, and

WM
Bm

Ww
W

w
o

. open the Gameltems folder to find a new placeable shape, Coin.

If this did not work, check your console for errors (typos, files not found,

etc.).

6.4 StaticShape and StaticShapeData

These classes are used to represent any world object that needs to allow mov-

ing objects to collide with it and needs at least some of the other features

provided by ShapeBase and ShapeBaseData. If you want to make a completely

stationary object that has a simple collision mesh and requires no interaction

features, use TSStatic instead (see Section 6.5).

StaticShape and StaticShapeData do not provide many new features. In

fact, their main purpose is to act as a concrete instance of the ShapeBase

and ShapeBaseData classes. In other words, you can create instances of these

where you cannot create instances of ShapeBase.

6.4.1 StaticShape and StaticShapeData Features

StaticShape and StaticShapeData have all the features of their parents

ShapeBase and ShapeBaseData. Additionally, these classes provide the fol-

lowing new shape features.

¢ Powered state tracking

e Dynamic typing

Chapter 6

183

Part Ill

Figure 6.2

a. Fade block.

$b. Fireball block.

184

Game Elements

6.4.2 Powered State

StaticShape adds the concept of powered vs. nonpowered. In truth, this is just

a flag to be used by us in our scripts. The engine does nothing different based

on this information.

Using two new console methods, we can set and get the powered state of

a StaticShape:

smyStaticShape.setPoweredState(true);

// Shape is now ‘powered’

if(SmyStaticShape.getPoweredState({)) {

echo(“This shape is powered!”);

} else {

echo(“This shape is NOT powered!”);

}

6.4.3 dynamicType

This field behaves exactly like the same named field found in the Item class.

Please refer to Section 6.3.5, “Items and dynamicType,” for a description.

6.4.4 Maze Runner Lesson #4 (90 Percent Step)—
Fade and Fireball Blocks

In our game, we are going to have two kinds of special maze blocks. The first

one will be a block that can be faded in and out of view (Figure 6.2a), and the

second will be a block that shoots fireballs (Figure 6.2b). Both of these blocks

require features from the ShapeBase hierarchy. The fade block uses the fading

and hiding features. The fireball block uses the reskinning property.

In this lesson, we will concentrate on the mesh properties and the data-

blocks that go with these two blocks. Later, we will write the scripts to fade

the fade blocks and to shoot fireballs from the fireball blocks.

Copy Required Files

From the accompanying disk, please copy:

1. the file \MazeRunner\Lesson_004\fadeblock.cs into \MazeRunner\

prototype\server\scripts\MazeRunner, and

2. the file \MazeRunner\Lesson_004\fireballs.cs into \MazeRunner\

prototype\server\scripts\MazeRunner.

Then, modify onServerCreated() in \MazeRunner\prototype\server\

scripts\game.cs to include these lines (bold lines are new):

Basic Game Classes

exec (“./MazeRunner/coins.cs”); // MazeRunner

exec (“./MazeRunner/fadeblocks.cs”); // MazeRunner

exec (“./MazeRunner/fireball.cs”); // MazeRunner

Block Geometry

The blocks will both have the same geometry, namely a single render mesh and a

single collision mesh. To see this geometry, open the file \MazeRunner\prototype\

data\MazeRunner\Shapes\MazeBlock\blockA.ms3d using MilkShape. You will

see that this model has a render mesh named “blockO” and a single collision

mesh named “collision-1”.

To enable reskinning, we need to do something special with the model’s

skin.

Reskinning

Still in MS3D, if you look at the material named “skin”, you will see that we

are using a texture named “base.skin.png”. (It only shows as “base” on the

MS3D button, but trust me, the file is named “base.skin.png”.) By using a skin

with this name, we will later be able to change the skin on this model.

To clarify, the rules for reskinning are as follows.

1. Skin your mesh with a texture named “base.XYZ.png”, where XYZ can be
anything you choose. The important thing to notice is that “base” is at the

start of the skin. This tells TGE that this is a reskinnable mesh.

2. Create as many extra textures as you need, as long as they have the name

“LMN.XYZ.png”, where XYZ is the same name from step 1 and LMN is a

name to make your texture name unique.

3. Reskin a shape at any time by writing the following code.

Sobj.setSkinName(“LMN”);

The above code tells the mesh to use the texture “LMN.XYZ.png” instead

of “base.XYZ.png”.

Self-llluminating

Because we are using a sort of cartoon/platform theme in our game, we will want

all of the blocks to self-illuminate. This means that they will not be affected by

the in-game lighting. To do this, we simply choose the self-illuminating option

when exporting (using the DTS-Plus exporter). Please see Figure 6.3.

Datablocks

All right, these base blocks are pretty much good to go. Let’s just create some

datablocks and we can move on.

Chapter 6

Figure 6.3

Making material self-

illuminating.

Part Ill

186

Game Elements

Fade Blocks Datablock

For the fade block, please open the file \MazeRunner\prototype\server\scripts\

MazeRunner\fadeblocks.cs. In this file, find the following lines of script.

datablock StaticShapeData(FadeBlock) {

category = “FadeBlocks”;

shapeFile = “~/data/MazeRunner/Shapes/MazeBlock/blockA.dts”;

isInvincible = true;

Not shown, but present in the completed copy of this file (as written by

me}, there is another bit of code at the top. it is a reloader. Reloaders are little

Scripts that are used to reload the file, thus reloading the datablock definitions

and any scripts in the file. In single-player mode, | use reloaders to reload files

| have changed while the mission is still running. This way, | can make minor

tweaks to scripts, etc., and not have to reload the entire mission.

The reloader for the fadeblocks.cs file is as follows.

function rldfb() {

exec (“./fadeblocks.cs”);

}

This datablock has the following attributes.

e These blocks will go in a special group (in the Creator tree) named Fade-

Blocks.

e It loads the mesh for the model we just discussed.

e It is invincible and thus takes no damage. We want this so that fireballs
striking a fade block will not damage it.

Fireball Blocks Datablock

For the fireball block, please open the file \MazeRunner\prototype\server\

scripts\MazeRunner\fireball.cs. In this file, find the following lines of script.

datablock StaticShapeData(FireBallBlock) {

category = “FireBallBlocks”;

shapeFile = “~/data/MazeRunner/Shapes/MazeBlock/blockA.dts”;

isInvincible = true;

i

As you can see, this datablock is identical (except for the name) to our fade-

block datablock. The behavior differences are entirely script based, and the

Basic Game Classes

reason we need another datablock is because, later, we will want to associate

some methods with the fade block but not the fireball block.

6.5 TSStatic

This class is not a child of the ShapeBase hierarchy and does not use a data-

block. It is used for any shape that will not be moved and will not need to be

animated or make sounds.

6.5.1 TSStatic Features

TSStatic has the following features.

e Basic rendering

e Simple collision

TSStatic objects are very lightweight objects used to render meshes that

are used for scene filling and to render meshes that do not need any of the

features provided by the ShapeBase hierarchy.

6.5.2 Rendering

TSStatic will render a standard mesh (just like a ShapeBase derivative), but it

cannot play any animations, reskin, cloak, etc. It just renders.

6.5.3 Collision

If you wish for these shapes to be collideable, you must create a collision

mesh as part of the model. This gives you the freedom to choose which items

are collideable and which are not. The shape supports multiple collision

meshes.

The TSStatic object will not register collisions, nor will it respond, but all

other active colliders (objects that can collide with other objects) will register

their own collision with a TSStatic object.

6.5.4 Creating TSStatic Shapes

Creating and placing a new TSStatic shape is simplicity itself:

obj = new TSStatic() {

position = “0 0 0”

rotation = “1 0 0 0%;

scale = “1 1 1”;

shapeName = “~/data/Shapes/Lessons/GeneralLessonShapes/egg.dts”;

Chapter 6

187

Part III

Figure 6.4.

Geometries of blocks A

through J.

188

Game Elements

6.5.5 Moving and Scaling

The basic position, rotation, scale, and shapeName datablock fields

behave in the same way as they do for a ShapeBaseData-derived object.

Also, being a a child of SceneObject, the TSStatic class can be scaled using

setScale() and moved/reoriented using setTransform().

6.5.6 Maze Runner Lesson #5 (90 Percent Step)—
Maze Blocks

The primary geometry of our maze consists of blocks and groups of blocks.

Later, when we discuss the level-loading scripts (Section 9.5.10), we’ll talk

about how these blocks are placed. For now, we will restrict ourselves to the

creation of these blocks.

The maze blocks share the same geometry and skin setup as the fade

blocks and fireball blocks from Lesson #4 (Section 6.4.4). So, if you have not

completed that lesson, please do it first.

Block Geometry

In addition to the single-block geometry we produced for the prior blocks, we

need several additional variations for the maze blocks. In theory, we could

build our entire level out of single blocks. However, I don’t advise this as we

do pay a penalty (network and processing) for each block in the scene. So,

knowing in advance that we will have various structures in our levels combin-

ing several blocks, we will make a few larger meshes. This way if we need an

area the size of say nine (3 x 3) blocks, we can place just one big block.

If you look in the \MazeRunner\prototype\data\MazeRunner\Shapes\

MazeBlock directory we created earlier, you will see that there are blocks A

through J. The geometries of those shapes can be seen in Figure 6.4. There are

four square blocks and three each of the horizontally oriented and vertically

oriented linear blocks. It may not be apparent immediately, but with these

ian a F

“Td...
CEE SLES oon

EEC

3

Vv

Basic Game Classes

blocks, we can create symmetrically laid out levels without needing to reori-

ent the blocks at placement time.

Placing Blocks

We aren’t writing the code to place these blocks yet, but when we do, it will

look something like this:

new TSStatic({) {

shapeName = “~/data/MazeRunner/Shapes/MazeBlock/block” @

SblockType @ “.dts”;

position = %actX SPC SactY SPC S$CurrentElevation;

scale = “1 1 1”;

)3

This code snippet is actually from our level builder, and as you can see, we

will be dynamically selecting the mesh to use as well as calculating the posi-

tion as we place the block.

Examine the Blocks

This guide does not discuss modelling, nor does it cover the various modelling

tools. However, as the blocks have already been created for you, I suggest that

you examine a few to see how they are constructed. Pay particular attention

to blocks E through J.

Don’t forget that all of the maze blocks have been copied over to our data

directory already at “\MazeRunner\prototype\data\MazeRunner\Shapes\

MazeBlock”. You can open any of the block models (*.ms3d) with a copy of

MilkShape 3D.

6.6 ShapeBaselmageData (Images)

ShapeBaseImageData objects (commonly referred to as just Images) are light-

weight objects that can only be attached to ShapeBase objects and are used

to render, animate, and script weapons, backpacks, flags, and other mounted

objects. These are used instead of ShapeBase objects because they require

much Jess network bandwidth to manage and transmit to clients. In addition,

they supply a unique set of capabilities.

6.6.1 ShapeBaselmageData Features
ShapeBaselmageData has the following features.

e Rendering

* Environmental mapping

Chapter 6

189

Part Ill

190

Game Elements

* Light emission

* POV dependent rendering

* Camera offsets

Mounting

* Can mount to any ShapeBase class or child

* Engine-event transitions

* Timed transitions

¢ User-defined transitions

* Hooks for lighting, particle emission, sounds, and animations

Scriptable state machines

* Up to 31 user-defined states

¢ Engine-event transitions

* Timed transitions

¢ User-defined transitions

* Hooks for lighting, particle emission, sounds, and animations

Physical parameters

* Mass

Collisions

* No collision box

6.6.2 Rendering Options

POV and Offsets

As noted above, ShapeBaselmage supplies some fields for manipulating how

an image is rendered.

firstPerson. If true, this image is rendered in both 1st POV and 3rd POV.
It is sometimes useful to not render an image in 1st POV, and this field

allows you to disable rendering if necessary.

eyeOffset. When rendering an image in 1st POV, the image may not be
in what looks like the correct position. To remedy this for the player’s view
only, you can apply this offset to adjust the position of the weapon in the

player’s first person view of the world. This does not affect third-person

rendering and is not seen by other players.

eyeRotation. Similarly to position, when rendering an image in first POV,

the image may not be in what looks like the correct orientation. To remedy
this for the player’s view only, you can apply this rotation to adjust the
rotation of the weapon in the player’s first-person view of the world. This

does not affect third-person rendering and is not seen by other players.

Basic Game Classes

Lighting

When mounted, an image can emit no light, a constant, or a pulsing light. This

lighting feature is controlled by the following ShapeBaselmageData fields.

e lightType. This string specifies what type of light the image emits:
NoLight, ConstantLight, or PulsingLight.

¢ lightColor. This three-element floating-point vector determines the color

of the light. Individual elements must be in the range [0.0, 1.0] and represent
the red, green, and blue components of the light color in that order.

e lightRadius. This floating-point value specifies the radius of the light

sphere.

¢ lightTime. For pulsing lights, this integer value specifies the light’s period
in milliseconds.

6.6.3 Mounting

ShapeBaselmageData has three parameters affecting how the image is mounted.

e mountPoint. This field is a numeric value in the range [0, 31] and corre-
sponds to a numbered mount point on the receiving shape. When an image

is mounted to a shape, it is the responsibility of the image mesh to supply

a specially named joint/node: mountPoint. When instructed to mount this

image to a shape, TGE will calculate a mount transform using the receiving

shape’s numbered mount point and the image’s named mountPoint.

Chapter 6

* If the numbered mount point does not exist in the receiving shape’s fur

mesh, the receiving shape’s centroid will be used instead (in the

player, this further offsets to the foot position).

* If the image does not specify a mountPoint joint/node, its centroid

will be substituted for that part of the mounting transform calculation.

e offset. This field is used to apply a position offset to the mount

transform.

¢ rotation. This field is used to apply a rotation offset to the mount trans-

form. This is especially handy when a weapon mounts at the wrong angle.

This can easily happen if a player’s mountO joint/node has gotten rotated

during the creation or animation/posing process. Instead of attempting to

resolve this problem in the mounting shape’s mesh/skeleton (which can be

tricky), just apply a rotation to the image’s mount transform.

6.6.4 W/eapon-Related Features

We will not be dicussing weapons-related ShapeBaselmageData features here;

however, all fields and methods are listed and documented in the appendix

that comes with this guide.

 You can only

mount one
instance of an

image to a shape.

More than one

instance of the same
ShapeBaselmageData,

mounted to the same

ShapeBase object,

violates the engine

mounting protocol.

191

Part Ill Game Elements

6.6.5 State Machines

The most powerful (and to some degree the most complicated} facet of

ShapeBaseIlmageData-derived images is their state machines. Each image can

define a unique state machine with up to 31 states. These state machines are

designed to be used with weapons but can be used for other purposes, too.

Before proceeding, you should already understand what a state machine

is. However, if you do not, the following summary may help.

A state machine, in the context of a game engine, is a mechanism by

which action-reaction events can be scripted or programmed. Essentially, an

object (in this case a weapon image) starts in a known state. Based on pre-

defined input events, the state machine may transfer to a new state. Each state

has a purpose, although the purposes may be varied and can include playing

an animation, playing a sound, running a script, etc. Additionally, each state

may define multiple exit paths.

States

There are 30 fields associated with the various states, state transitions, state

triggers, state actions, etc., that the Image state machine handles. Because

most of these are associated with weapons, a complete discussion of these

states is not given here. For now, we will focus on how the basic state-machine

mechanism works.

A listing of all the state fields appears in Table 6.2. A complete listing of

states with descriptions is provided in the Fields and Methods appendix.

Table 6.2.

State fields.

stateAllowImageChange stateDirection stateEjectShell

stateEmitter stateEmitterNode stateEmitterTime

stateEnergyDrain StateFire statelgnoreLoadedForReady

stateLoadedFlag stateName stateRecoil

stateScript stateSequenceRandomFlash stateSequence

stateSound stateSpinThread stateTimeoutValue

stateTransitionOnNot Loaded stateTransitionOnTriggerDown stateTransitionOnTriggerUp

stateTransitionOnAmmo stateTransitionOnLoaded stateTransitionOnNoAmmo

stateTransitionOnNoTarget stateTransitionOnNotwet stateTransitionOnWet

| stateTransitionTarget stateTransitionTimeout stateWaitForTimeout

192

Basic Game Classes Chapter 6

Defining States

We can define up to 31 states in our Image state machines. To do so, we sim-

ply name them as follows.

datablock ShapeBaseImageData(SimpleStates) {

//

stateName [0]

stateName [1]

“Preactivate”;

“GreenLight” ;

e Figure 6.5.
stateName[2] = “YellowLight” ; ese gu
stateName[3] = “RedLight”; vu Four named states.

, GreenLight

This code produces four named states: Preactivate,

GreenLight, YellowLight, and RedLight. So far, we + eaconds ? Seconds

haven't connected the states, so we don’t know how the

machine “flows.” Thus, our state picture would look some- ~

thing like Figure 6.5. ik 2 Seconds :
edLiont ag YellowLight

Required States?

If it isn’t obvious by the names of these states, we’ll be making a traffic light

with this state machine. However, you may wonder at the choice of state zero

(Preactivate).

Generally speaking, you must define a state for the machine to start in.

Traditionally, that state is named Preactivate and is numbered zero. This

state will not execute scripts, animations, or sounds. The most it can do is give

TGE a place to start the machine and wait for a bit before transitioning to the

first active state.

Transitioning

There are several ways to transition from one state to another. In addition, we

can make multiple paths out of any one state. For now, we'll focus on mak-

ing a single transition for each state. We want these transitions to look like

Figure 6.6.

oo , Preactivate Figure 6.6.
Furthermore, the transitions we would like to use for |

. . ws . : Transitions for stoplight.
our stoplight are timed transitions. It is possible to make \

states timeout and then transition to a named state. For

example, if we wanted to create this sequence:

@ Preactivate > GreenLight (immediate)

® GreenLight > YellowLight (3 seconds)

® YellowLight > RedLight (2 seconds)

® RedLight > GreenLight (3 seconds) oii sas
® repeat... | 193

Part Ill

Figure 6.7.

Timed transitions for

stoplight.

Preactivate

\ Immediate

Greenlight

3 Seconds

jaconds

2 Seconds

33

Redlight qf YellowLight

194

Game Elements

we would code our state machine as follows.

datablock ShapeBaseImageData(SimpleStates) {

//

stateName[0] = “Preactivate”;

stateTransitionOnTimeout[0] = “GreenLight”;

stateName[1] = “Greenlight”;

stateTransitionOnTimeout[1] = “YellowLight”;

stateWaitForTimeout[1] = true;

stateTimeoutValue[i] = 3.0;

stateName[2] = “YellowLight”;

stateTransitionOnTimeout[2] = “RedLight”;

stateWaitForTimeout[2] = true;

stateTimeoutValue[2] = 2.0;

stateName[3] = “RedLight”;

stateTransitionOnTimeout[3] = “GreenLight” ;

stateWaitForTimeout[3] = true;

stateTimeoutValue[3] = 3.0;

};

This produces the state machine in Figure 6.7.

Making States Do Work

Great! Now, we have a state machine that will transition: Preactivate >

GreenLight > YellowLight > RedLight > GreenLight > ... ad infini-

tum. Wait a second, though. It isn’t doing any work! Well, as with transitions,

state machine states can do lots of different kinds of work. They can run

scripts, play sounds, trigger particle emitters, etc. Pretty cool.

Now, for our example we want the stoplight to change the light colors

repeatedly. How the heck are we going to do that? Here are some ideas.

¢ Runa script and change the image skin? Nope. Images don't support skin

switching.

e Run a script and replace the image itself? Naw. You could do this, but it’s

really messy.

e Use an IFL and switch animation states? Yeah. That’s what we’ll do.

IFL is the acronym we use when talking about an image file list. A TGE

supported feature we have not yet talked about is animated textures. It is pos-

sible to create a model that takes a base image and then changes skins using

Basic Game Classes

an animation sequence. It is kind of like the ShapeBase skin-switching idea,

but it is more flexible and can get higher frame rates than that method.

Running Animations

So, we've chosen to run an animation to change the light. How do we do it?

Like this.

datablock ShapeBaseImageData(SimpleStates) {

//

StateName{0} = “Preactivate”;

stateTransitionOnTimeout [0] = “GreenLight”;

stateName[1] = “Greenlight”;

stateTransitionOnTimeout{1]

stateTimeoutValue[(1]) = 3.0;

stateSequence[1] = “GreenLightOn’” ;

“YellowLight”;

stateName[2]) = “YellowLight”;

stateTransitionOnTimeout[2] = “RedLight”;

StateTimeoutValue[2] = 2.0;

stateSequence[2] = “YellowLightOn” ;

stateName[3) = “RedLight”;

SstateTransitionOnTimeout [3] = “GreenLight”;

stateTimeoutValue[3} = 3.0;

stateSequence[3] = “RedLightOn” ;

};

This example tells TGE to switch the animation sequence for this image to the

named states when the state machine transitions into the state. At this point,

our work is done. We have defined our state machine.

Running Scripts

Because you might want to do more than just run an animation, I'll get you

started on running scripts and then let you investigate the other states your-

self. To run a script when we transition into a state, we do the following.

dGatablock ShapeBaseImageData(SimpleStates) {

//

stateName[0] = “Preactivate”;

stateTransitionOnTimeout[0) = “GreenLight”;

stateName(1l] = “GreenLight”;

stateTransitionOnTimeout[1] = “YellowLight”;

Chapter 6

195

Part Ill

196

Game Elements

stateTimeoutValue[1] = 3.0;

stateScript[1] = “doSomething” ;

//

};

Then, we must be sure we’ve created a function doSomething() in the

namespace of our image.

function SimpleStates:doSomething(%this) {

//

}

Physical Parameters

If tracking physical properties is important to your game, then it will be worth

noting that ShapeBaselmageData provides a mass field to represent the mass

of a mounted shape. It can be extracted directly from the ShapeBaselmage

mass field. There is no getMass() equivalent.

Mass can be used for various purposes, ranging from calculating a play-

er’s cumulative mass (with weapons, etc.) to determining if a weapon is too

heavy for the player to carry or mount.

Collisions

An interesting thing about ShapeBaseImageData images is that they do not

have a collision box. Therefore, no collisions occur. However, you may notice

that very large weapons will push back when they are mounted and the

weapon is pushed up against an interior or another object with a collision

mesh.

This pushing back occurs if the mesh that the image uses defines a special

node named retractionPoint. The engine will see that retractionPoint

has collided with the boundary of a collision mesh and push the weapon back

to prevent it from penetrating walls and other objects. If you do not want this

behavior, simply do not create this node in your models.

Image Animations

Images support multiple animations, mostly related to weapons, but there

is one animation sequence that is somewhat generic, namely the ambient

animation.

ambient Sequence

If you wish, you may define a cyclic animation for images, named ambient.

This sequence will play continuously. It may be blended or nonblended

depending upon your needs.

Basic Game Classes

6.6.6 InteriorInstance

This section of the chapter is mostly informational. Except for basic rendering

and placement, all features related to interiors require art skills not discussed

in this guide. However, I want you to Know what features are available to

those who are interested in learning more about the “art” aspects of interiors.

You may skip this section if you are not interested in this kind of discussion.

Terrain Inside

When you create a new interior (that is, when you place one in the world), you

may set a special field named showTerrainInside to true or to false.

If this field is set to true, terrain will show up inside the interior.

If this field is set to false, all rooms bounded by portals will turn off any

terrain that might normally poke throught the floor of the bounded room(s).

Remember that, if there are no portals bounding a room, the show-

TerrainlInside field will have no effect.

Activating and Deactivating Lights

TGE supports the ability to enable and disable individual lights in an interior.

To check for these triggerable lights, use the following method.

smyInterior.echoTriggerableLights();

Or, if you already know what your light names are, you can activate and deac-

tivate the lights as follows.

$myInterior.activateLight(lightName);

$myInterior.deactivateLight(lightName);

Using alarmMode

TGE supports another Interior lighting feature. This is a sort of hanger-on

from the days of Tribes. In Tribes 2, when a power supply got knocked out,

the lights in an interior would turn red. This was the alarmMode setting for

that light; i.e., you would have a normaiMode and an alarmMode light in the

same spot, and alarmMode of the InteriorInstance would dictate which light

was on. The method to switch the alarmMode on and off is as follows.

smyinterior.setAlarmMode(“On”);

smyinterior.setAlarmMode(“Off”);

Notice that, instead of Booleans, this method takes the actual strings “On”

and “off”.

Chapter 6

197

Part Ill

 I'll mention it again

later, but if your player

shape Is set to not

render while in Ist

POV, you will not be

able to see yourself

in mirrors while in 1st

POV. To fix this, simply

enable rendering of

the player shape

198

Game Elements

Levels of Detail

In order to create an interior that supports multiple levels of detail (LOD), you

must make several instances of the same interior and manually modify them

to have less and less detail. Then, following the instructions for you particular

exporter, export these interiors together. TGE can then use this multiple LOD

interior. It will automatically modify the LOD for you.

Manual LOD

You may also manually set the LOD for an interior using scripts. First, you can

query the InteriorInstance for the number of levels it supports.

// Returns number of LOD levels in this DIF

emyInterior.getNumDetailLevels();

Then you may select one of those levels.

smyInteior.setDetailLevel(0); // Set LOD to 0

Selecting a nonexistent LOD will default to LOD 0.

Disabling LOD

You may wish to disable LOD changing for various reasons. To do so, simply

set the global variable $pref::Interior::detailAdjust to false.

Mirrors

A very cool feature supported by InteriorInstance is the mirror object. Using

the various BSP tools supported by Torque, simply drop a mirror entity into

while in Ist POV. your model and voila!

\—________ ED Yes, before you ask, mirrors will reflect the outside world too, not just

the inside of an interior and its contents.

6.7 Summary

We started this chapter restating the fact that Torque has two broad categories

of model rendering objects, the shape and the interior. We spent a short time

discussing the general purpose of the shape category and then listing the vari-

ous shape classes as well as mentioning their primary uses. Next, we briefly

discussed the purpose of the interior category.

Having finished summarizing and bullet listing, we jumped into a dis-

cussion of shapes and the ShapeBase hierarachy. First on this stop were the

base classes ShapeBase and ShapeBaseData. We covered the primary features

supplied by these classes, giving detailed descriptions for rendering, damage,

Basic Game Classes

energy, physical parameters (like mass and density), eye transforms, shape

animations, sounds attached to shapes, shape and image mounting, and the

deployment helper functions.

Next up on the list of shapes were [tem and ItemData. Again, a detailed

discussion of features followed. We covered the cool rendering, lighting, phys-

ics, and collision features, ending with a short discussion of dynamic typing.

Along the way we stopped and created some assets (coins) for our game.

After Item and ItemData came a very short discussion of the simple

StaticShape and StaticShapeData classes, which are basically concrete imple-

mentations of the virtual ShapeBase and ShapeBaseData classes.

TSStatic came next. We learned that this is not a derivative of ShapeBase

but rather a lightweight class used for rendering models that don’t need a lot

of features besides basic rendering and simple collisions. Here, we made two

new resources for our game, the fade block and the firebal] block.

Really rolling now, we jumped into an introductory talk about the Shape-

BaseImageData class. We learned about its various features, including render-

ing, mounting, per-image state machines, physical parameters, and collisions

(the lack of them). As an introduction to the image state machine, we imple-

mented a simple stoplight using the image state-machine features.

After images, we moved on to a short discussion of interiors. Here, we

learned about terrain interactions, lights and lighting, LOD, and mirrors.

Overall, this was a fairly short chapter, but it still packed in a lot of useful

information that you may wish to refer to again. Additionally, to supplement

this information, there is a complete appendix that documents all of the con-

sole classes, including shapes and interiors. The descriptions in the appen-

dix are succinct but complete, covering all fields, methods, and callbacks for

every console class we discuss.

Chapter 6

199

Chapter 7

Gameplay Classes

7.1 Gameplay?

Gameplay is probably one of the most nebulous terms (besides fun) used

when discussing games and game design. For the purpose of this chapter (and

subsequent chapters), we are less interested in the definition of gameplay

than we are interested in the elements of gameplay.

One such element is interaction. In fact, it is safe to say that gameplay

cannot exist without interaction. Futhermore, | will propose that interaction is

in fact a major element of gameplay. To that end, this chapter focuses on the

primary classes that are used to enable and implement interaction within our

games.

The following classes are discussed in this chapter.

¢ Camera. This provides us with our view on the world.

¢ Player. This class supports a variety of features and is intended to be used

to represent bipedal, multipedal, and other types of avatars.

¢ Vehicles. TGE provides three implementable vehicle classes: FlyingVehicle,

HoverVehicle, and WheeledVehicle. These, like the Player class, are meant

to be used as avatars or as transport for the avatar.

This chapter also focuses on a topic that is not centered in any one class,

but operates on and with several classes to provide a very commonly found

interaction construct, the inventory. Inventories form the basis for common

game interactions, namely picking up, storing, using, and dropping objects.

So, the last topic in this chapter is about an inventory system that is sup-

plied with the guide. It is a standalone inventory system that (unavoidably)

utilizes some scripting topics that we have not yet discussed. Thus, you may

wish to stop before reading that part of the chapter and quickly review Chap-

ter 9, “Game Setup Scripting” and Chapter 10, “Gameplay Scripting.” Then,

when you are properly briefed, return here and finish the chapter.

7.2 Camera and CameraData

Together and in cooperation with other gameplay classes, Camera and Cam-

eraData define our game view.

Game view is a generic term I am using to consolidate several view-related

topics. Some of these topics are listed in Table 7.1.
201

Part Ill

Table 7.1.

Game view topics.

202

Game Elements

oe Description
Point of There are two basic POVs we are concerned with.

View « First person, which is the case where the camera is looking out of the

(POV) player’s head or eye.

¢ Third person, which is the case where the camera is looking down on the

player from a distance.

Field of Field of view is a camera term that has to do with the angle of coverage
View (or angle of view). When we talk about FOV in TGE, we are measuring

(FOV) an angle on either side of an imaginary vector coming straight out of the

camera and pointing into the world in the direction we are looking.

For an FOV of 45 degrees, our view angle is 90 degrees (45 degrees to

each side of the vector). If we think for a moment, we'll come to the

conclusion that an FOV of 180 degrees would mean we can see all around
the point of viewing (360 degrees of coverage).

A standard FOV for first-person views is 90 degrees (180 degrees of
coverage) or less.

Control In Torque, there always has to be a control object, scoping our position in
Object the game world and thus allowing the engine to determine what is visible

to us. Any of the classes in this chapter are approriate control objects.

Free In addition to having the camera tied to one of the other gameplay classes,
Camera it is possible for the camera to roam freely, in effect taking over the role of

avatar (although without any visible representation, of course).

Zooming What we call zooming in TGE is actually a foreshortening of the FOV. That
is, aS our FOV decreases, it seems visually as if our view is zooming in and

bringing far objects nearer. Likewise, as our FOV increases, objects seem to
move away.

7.2.1 Camera and CameraData Features

Camera and CameraData have the following features.

¢ Point of view

e Field of view

e Render scoping

The Camera class is really quite lightweight and derives almost all of its behav-

ior from the ShapeBase class. In fact, as you will soon discover, there are times

when a camera is not even required, and another ShapeBase-derived class can

handle the Camera class’s duties. However, let’s not get ahead of ourselves.

Instead, let’s first learn more about the game view.

7.2.2 Parts of the Whole

In order to control the current game view, we will (at times) involve several

classes’ fields, methods, console functions, and console variables. Table 7.2

summarizes all TGE elements involved with game view.

Gameplay Classes

Engine Defined Console Functions

setDefaultFov(defaultFov) Sets default FOV to specified value if it is

between the current min/max.

setFov(defaultFov) Sets current FOV to specified value if it is
between the current min/max.

setZoomSpeed(speed) Sets the zoom speed (milliseconds per 90 degree
FOV delta).

Globals

ScameraFov Global variable showing current camera’s current
FOV. Updated every frame.

Scamera: :movementSpeed Defines current speed of free camera in world
units per second. Set in scripts, used by engine.

S$firstPerson A global variable used solely for tracking the

current first-person status of the camera.

GameConnection:: Console Methods

setFirstPerson(FirstPerson) Sets this game connection to first- or third-

person view based on the Boolean value of the
argument firstPerson.

Camera:: Console Methods

setFlyMode(); Sets camera to free-camera (fly) mode; i.e.,
camera is not attached to an object.

setOrbitMode(orbitObject, Attaches camera to arbitrary ShapeBase object

transform, minDistance, and causes it to be in orbiting mode.
maxDistance, curDistance,

ownClientObject);

ShapeBaseData:: Fields

cameraDefaultFOV Defines default FOV for camera “viewing

through” this shape.

cameraMaxDist Defines max distance for camera “viewing

through” this shape.

cameraMaxFOV Defines max FOV for camera “viewing through”

this shape.

cameraMinDist Defines min distance for camera “viewing

through” this shape.

cameraMinFOV Defines min FOV for camera “viewing through” this shape.

Chapter 7

Table 7.2.

TGE elements involved

with game view.

203

Part Ill Game Elements

Table 7.2 (continued).

204

_— TGE Element — Description

firstPersonOnly Declares that the camera attached to this shape

may only view in first person.

observeThroughObject Declares that the camera attached to this shape

should use the shape’s field parameters for FOV

and Distance.

useEyePoint This tells the camera to use the controlling

object’s camera transform.

ShapeBase:: Methods

setCameraFOV(fov); Set FOV to new value fov. Automatically

clamped to curent min/max. Does not take effect

immediately, only when camea switches modes.

getCameraFOvV(); Returns current camera FOV for this shape,

which may or may not be the same as the

current FOV.

PlayerData:: Fields

maxFreeLookAngle Total radians of rotation (about player) allowed

when in “free look” mode.

maxLookAngle Maximum upward rotation of camera about

player in radians.

0.0 is straight forward. 1.57 is straight up.

minLookAngle Minimum downward rotation of camera about

player in radians.

0.0 is straight forward. —-1.57 is straight down.

VehicleData:: Fields

cameraDecay Rate at which camera returns to default position

(post-lag). Measured in seconds (floating point).

cameraLag How much the camera lags a vehicle that is

accelerating.

cameraOffset Camera's vertical offset from vehicle in world

units.

Model Nodes

eye Location for first-person camera to attach to this

shape.

cam Location for third-person camera to attach to this

shape.

Gameplay Classes

As can be seen by this list, setting up the game view can be somewhat ™

Chapter 7

complicated. We will examine each of the TGE elements individually, inf a

the order listed in Table 7.2. Then, we will take these elements and com-

bine them (by example) into commonly encountered game views.

The Control Object (An Aside)

Before we can proceed, we have to briefly discuss the control object. As pre-

viously noted, the client requires that there be (at all times) a control object.

This object is used to determine many things, but in the context of game view,

we only care whether the camera is the control object or another shape is the

control object. Changing the control object is as simple as a single function

call. For an example of this, let’s look at the camera-toggling command that

comes with both the TGE Demo and the GPGT Lesson Kits.

function serverCmdToggleCamera(%client) {

if ($Server::ServerType $= “SinglePlayer”) {

control = %client.getControlObject ();

if (%control == %Sclient.player) {

Scontrol = S$client.camera;

Scontrol.mode = toggleCameraFly;

}
else {

Scontrol = sclient.player;

%écontrol.mode = observerFly;

}

$client.setControlObject (%control) ;

As can be seen, by simply passing the handle of a ShapeBase object (or a

camera) to the: method setControlObject (), we can change the current

control object.

The control object affects the game environment in several ways, but for

the most part these are advanced topics. For now, we will limit our discus-

sion to the differences between having a camera, a player, or a vehicle as the

control object.

FOV and Zoom Console Functions

There are two FOV console functions and one zoom function. The

setDefaultFOv() and setFov() methods do basically the same thing.

They will change the current FOV to a new FOV. This change will occur either

immediately or over a short duration (based on the current zoom speed).

The sampler that

comes with this

guide has a lesson

that explores game

views by allowing you

to mix and match dif-

ferent player, vehicle,

and camera settings.

This lesson is named

“Game Views.”

205

Part Ill

206

Game Elements

However, there is a slight difference in the way these two functions operate.

If the FOV is currently adjusting and we call setDefaultFov(), it will be

ignored. On the other hand, calls to set FOV() are never ignored.

The setZoomSpeed() function is used to set the time it takes to zoom

per 90 degrees of FOV. Here are some examples.

setZoomSpeed(0); // Transition FOV’s immediately

setFOV(45); // Set FOV to 45 degrees (takes

// network latency time only)

setZoomSpeed(4000); // Transition of 90 degrees FOV

// requires 4 seconds

setFOv(90); // Set FOV to 90 degrees

// (takes two seconds)

The Globals

There are three globals that may at times be involved in game-view decisions.

The first of these globals is $cameraFOV. Jt should be treated as a read-

only global used to reflect the current FOV settings as the engine sees them.

The second of these globals, $camera: : movement Speed, can be read and

modified. It is used to adjust how fast the camera moves in free-fly mode.

The third and last of these globals, $firstPerson, can also be read

and modified. However, it changed its behavior after version 1.3. In version

1.3, changes to this global change the POV between 1st and 3rd POV. Start-

ing in version 1.4, this global is used by scripts to track the current POV, but

changes to the value do not affect the behavior of the engine. Only calls to

GameConnection::setFirstPerson() do this, as you will see shortly.

GameConnection: :setFirstPerson ()

As I just mentioned, in versions 1.3 and earlier, the 1st and 3rd POV transition

is controlled by the global variable $firstPerson. In versions 1.4 and later,

this functionality is handled by the console method set FirstPerson(). For

either the TGE Demo or the GPGT Lesson kit, if you search the file “ ~ /client/

scripts/default.bind.cs” you will find the following code:

function toggleFirstPerson(%val) {

if (val) {

$firstPerson = !SfirstPerson;

ServerConnection.setFirstPerson($firstPerson);

Gameplay Classes Chapter 7

This code now uses $£irstPerson to track the current POV (1st or 3rd) and

tells the server to switch to whatever POV we have selected.

Camera Methods

When the camera is not attached to a shape (when it is the control object), it

can be in one of two modes.

e Free-fly mode. Camera is free to fly anywhere in the world.

¢ Orbiting mode. Camera is “tethered” to an object and follows the object if

it moves.

To clarify these concepts, let’s look at some sample code.

sclient.setControlObject (%camera);

scamera.setFlyMode(); “

Scamera: :movementSpeed = 25;

// limit camera velocity to 25 world units/s

The above code makes the camera the control object, places the camera in

free-fly mode, and then sets the camera’s current movement rate to 25 world

units per second, using the global $camera: :movement Speed.

sclient.setControlObject (%camera) ;

camera.setOrbitMode(%player , %*player.getTransform() ,

10.0 , 15.0 , 10.0);

The second piece of code makes the camera the control object and then teth-

ers it to the player, where it will be allowed to orbit. It is told to orbit the player

and use the camera’s current transform. Furthermore, the orbit “tether” is lim-

ited to a length of between 10 and 15 world units, starting at 10 world units.

ShapeBaseData Fields

ShapeBaseData has eight fields that contribute to our game view.

The FOV and Distance Fields

The first five ShapeBaseData fields are related to the FOV and viewing dis-

tance. We may specify a default FOV and constrain FOV within a minimum

and a maximum bound by specifying degree values (between -360.0 and

360.0) for cameraDefaultFOV, cameraMinFOV, and cameraMaxFOV,

respectively. We may also define a minimum and maximum distance between

the “camera” and the current control object by setting cameraMinDist and

cameraMaxDist, respectively.
207

Part Ill

208

Game Elements

observeThroughObject

This field is used to tell the engine which FOV and distance values to use

when a camera is in orbit mode. When the engine detects that the camera is

in orbit mode, it will query the object that the camera is orbiting and use that

object’s datablock for the observeThroughObject field setting. If the field

is set to true, the engine will place the camera directly behind the shape it

is orbiting and use that object’s datablock’s FOV and distance values. If the

field is set to false, then the engine will use the FOV values in the camera’s

datablock and the distance value specified in the setOrbit () call.

firstPersonOnly

This field is used to restrict the view (when a camera is attached to a shape)

to 1st POV only. This is done by setting the control object’s datablock field

firstPersonOnly to true. If this field is false, the camera is allowed to

assume either 1st POV or 3rd POV.

useEyePoint

Sometimes, the player will mount another shape, such as a vehicle. At times

like this, we may want the camera to now use the vehicle’s camera nodes (eye

and/or cam). By setting the useEyePoint field to true, we are instructing

the engine to do this. If this field is false, the engine will continue to use the

FOV and distance values it was already using (in the vehicle’s datablock).

ShapeBase Methods

There are two FOV methods scoped to the ShapeBase class. These are used for

setting and getting the current FOV of a shape. | suggest, however, that you

do not use the setcameraFov() method. It almost always gets overridden

or ignored. The getCameraFov() method is useful, though, because it is the

only way to get the current FOV for a non-camera object. Remember that, for

the current camera, you can just observe the global variable $cameraFov.

PlayerData Fields

When the camera is attached to a player and in Ist or 3rd POV, we can restrict

the angles (pitch and yaw) that the camera may assume.

minLookAngle/maxLookAngle (Pitch)

By setting the minLookAngle and maxLookAngle fields, we can restrict the

up-down rotation (pitch) of the camera. These fields take values in radians.

In the following example, the camera can pitch all the way around in either

direction.

Gameplay Classes

datablock PlayerData(testAvatar8: testAvatar2) {

minLookAngle = -3.141593;

maxLookAngle = 3.141593;

};

In the following example, the camera can pitch straight down to straight up.

datablock PlayerData({(testAvatar8: testAvatar2) {

minLookAngle = -~-1.57;

maxLookAngle 1.57;

};

Ih

maxFreeLookAngle (Yaw)

In addition to pitch, we can limit the left-to-right (yaw) of the camera when it

is attached to a player. This is done by setting the maxFreeLookAngle field.

Again, this field takes values in radians. In this example, the camera can yaw

a complete 360 degrees in either direction (left or right).

datablock PlayerData(testAvatar8: testAvatar2) {

maxFreelookAngle = 3.141593;

he

Notice the name of this field: maxFreeLookAngle. The implication is that

this (also) controls the angle of free-looking.

Free-looking is a special mode where the camera is in 3rd POV and it

rotates around the player without rotating the player’s body. The head may

rotate if an appropriate animation is provided (see Section 7.3, “Players”).

This free-looking is used for looking around without changing aim-point and

for other purposes.

To get into free-look mode, the camera must be in 3rd POV, then we set

the global variable $mvFreeLook to true. When this variable is false, the

camera and player will behave normally.

VehicleData Fields

Besides players, the camera can be attached to a vehicle. The vehicle data-

block adds a few more fields to make the camera behave nicely. For example,

when a vehicle accelerates, the camera can lag behind. Then, the camera can

catch back up. Also, we can choose the current distance between the camera

and the node on the vehicle it is currently attached to.

Lagging and offset are controlled by three VehicleData fields.

Chaoter 7

209

Part Ill

210

Game Elements

Lagging

To enable lagging, we set the VehicleData field cameraLag to a positive value.

Likewise, we must set the cameraDecay value to a positive value.

datablock WheeledVehicleData(testVehicle) {

//

cameraLag = 0.1; // Lags by 10% of delta while accelerating

cameraDecay = 0.75; // Recovers 75% of lag per second

}i

Offset

We can force the camera to be vertically offset from the camera node it is

attached to by setting cameraOffset.

datablock WheeledVehicleData (testVehicle) {

//

cameraOffset = 1.5; // Vertical offset of 1.5 world units

}a

Your Meshes and Special Nodes

We'll touch on this again when we talk about players and vehicles, but if you

want the camera to attach properly to a model, the model must have two spe-

cially named nodes (joints): eye and cam.

eye is the lst POV camera mount, and cam is the 3rd POV camera

mount.

If one or both of these is not present and the current POV needs it, the

default mounting point will be the centroid of the shape.

7.2.3 Basic Game Views Cookbook

At this point, you should have a pretty good idea of what is going on with

individual elements that affect game view. However, you might still be fuzzy

on the big picture, so I will provide some cookbook examples for the most

commonly used game views.

The recipes in this section only apply to version 1.4 and later. If you are

working with version 1.3 or earlier, you will either want to upgrade or

change all code referencing the setFirstPerson() method to statements

that change the value of the global $first Person instead. For example,

instead of ServerConnection.setFirstPerson(true), you would

have $firstPerson = 1.

Gameplay Classes

Ist POV Only—Standard (90-Degree] FOV

To force the engine to use only 1st POV, have the player use the following

datablock and make the player the control object.

datablock PlayerData(firstPOVOnly) {

firstPersonOnly = true;

observeThroughObject = true;

cameraDefaultFOV = 90.0;

cameraMinFOvVv = 90.0;

cameraMaxFOV = 90.0;

};

Forcing Ist POV Only—Alternate Method

There is another way to force a lst POV. First, disable the toggleFirst-

Person() function by unmapping it (from actionmap) or gutting it.

function toggleFirstPerson(%val) {

// removed entire body of function

Now, in the file “ ~ /server/scripts/clientConnection.cs” at the very end of the

function GameConnection: :onConnect () add the following code.

ServerConnection.setFirstPerson(true);

Forcing 3rd POV Only

Follow the steps we used (above) to disable the toggleFirst Person ()

function and make sure that your player datablock has the following values.

datablock PlayerData(thirdPOVOnly) {

firstPersonOnly = false;

observeThroughObject = true;

//

\;

Now, in the file “ ~ /server/scripts/clientConnection.cs” at the very end of the

function GameConnection::onConnect () add the following code.

ServerConnection.setFirstPerson(false);

Chapter 7

211

Part III

212

Game Elements

ist or 3rd POV Capable

To allow the game view to be either lst or 3rd POV, have the player use the

following datablock and make the player the control object.

datablock PlayerData(firstOrThirdPOVOK) {

firstPersonOnly = false;

observeThroughObject = true;

// average FOV freedom

cameraDefaultFOV = 90.0;

cameraMinFOV = 45.0;

cameraMaxFOV = 120.0;

// average looking freedom

minLookAngle = -1.57; // straight down

maxLookAngle = 1.57; // straight up

maxFreelookAngle = 2.1; // 2/3 rotation

Mi

Enabling Orbit Mode

To enable orbit mode, the datablock for the object that the camera will be

tethered to should be configured similarly to the following example.

datablock PlayerData(useCameraSettings) {

observeThroughObject = false;

firstPersonOnly = false;

// Average Looking Freedom

minLookAngle = -1.57; // straight down

maxLookAngle = 1.57; // straight up

maxFreelookAngle = 2.1; // 2/3 rotation

i

Additionally, the camera should have a datablock definition that defines FOV

values.

datablock CameraData (fixedFOVDistanceCam) {

// Standard FOV

cameraDefaultFOV = 90.0;

cameraMinFOV = 90.0;

cameraMaxFOV 90.0;

Gameplay Classes Chapter 7

Use Vehicle’s Eye Node on Mount

To have the game view automatically use a vehicle’s eye and cam nodes when

a player mounts the vehicle, edit the vehicle’s datablock as follows.

datablock wheeledVehicleData(theVehicle) {

//

useEyePoint = true;

//

i

{ One thing that people often forget is that the camera is derived from ES

SceneObject and therefore has all of its attributes. One of these attributes
is the transform. It is often nice to have a camera dropped into the game

in exactly a certain place with a specific orientation. One way to do this is to

move the camera to the place you want to spawn, orient it, and then grab the

camera’s transform.

ScamTransform = %cameralD.getTransform();

With this information in hand, simply place a single spawn point in the game

and then force it to assume the saved transform.

SspawnPointID.setTransform($camTransform)j;

Last, save the mission. Now, the next time you load up and drop into the world,

your free-camera position and orientation will be exactly correct.
7.3 Player and PlayerData

The Player and PlayerData classes derive from ShapeBase and ShapeBaseData,

respectively. Therefore, they inherit all the features of those classes. Addition-

ally, they add the following features.

e Rendering

* First POV enable

e Forces and factors

* Max speeds

* Energy drain

* Delays

« Resistance factors

¢ Angle limits

* Step height

¢ Velocity parameters

213

Part Hl

214

Game Elements

e¢ Programmable pickup radius

e Look-angle limits

¢ Impacts (vs. collisions)

© Special effects

¢ Foot puffs

* Footprints

* Splashes

* Bubbles

* Sounds

e Standard animations

7.3.1 Player Rendering (POV)

As we’ve seen, when the camera is attached to a player, we can view our game

in either 1st POV or 3rd POV. In additon to the features restricting camera yaw

and pitch, there is one more field of interest: renderFirstPerson.

renderFirstPerson

When we are viewing in 1st POV, it may be neccesary to disable rendering of

the player mesh (on the player’s client only); that is, we might not want the

player to be able to see his body in 1st POV. Rendering of the player’s body

(mesh) in 1st POV can be disabled using the renderFirstPerson field, as

follows.

datablock PlayerData(doNotRenderinlstPOV) {

//

renderFirstPerson = false;

i

Please remember (from the Expert Tip in Section 6.6.6), if you have an inte-

rior with mirrors and you are playing in lst POV with renderFirstPerson

set to false, your player will not render in the mirror. To fix this, set

renderFirstPerson to true.

7.3.2 Player Special Effects

The player comes with a ton of special effects, including particle effects

and sound effects. For ease of consumption, these have been divided into

categories.

Gameplay Classes

Foot Puffs and Footprints

The player can be made to emit particles representing foot puffs while walking

on terrain by specifying the following.

datablock PlayerData(makeFootPuffs) {

/{

footPuffEmitter = “myDustPED” ;

footPuffEmitterNumParts = 15;

footPuffRadius = 0.25;

//

VF

The above sample specifies that “myDustPED” will be used by the player’s foot-

puff emitter. Furthermore, it will emit 15 particles. The location of the foot-puff

emitter is automatically determined by the engine.

Besides foot puffs, we can have footprints. Footprints are rendered using

decals, so please see Chapter 11, “Special Effects,” for declaring decals. In

order to use a declared decal for a footprint, do the following.

datablock PlayerData(renderFootPrints) {

//
decalData = “PlayerFootprint”; // Decal Datablock

decaloOffset = 0.1; // Alternate decals left-right offset

};

Besides the decal datablock, an offset is specified. This offset is the distance

from center (in world units) that alternating decals are rendered. In other

words, for the above code, the left-decal is rendered 0.1 world units to the left

of center, and the right is 0.1 world units to the right of center. This makes the

distance between the decals 0.2 world units.

We could specify the PlayerFootprint datablock as follows.

datablock DecalData(PlayerFootprint) {

sizex = 0.25;

SizeY = 0.25;

textureName = “~/data/shapes/player/footprint”;

i

The PlayerFootprint specifies that the footprint should be 0.25 by 0.25 world

units square and use the image in Figure 7.1. This image measures 32 x 32

pixels. It could be larger for greater detail, but changing the size of the image

file does not change the resultant footprint size.

Chapter 7

Figure 7.1.

Player footprint.

215

Part Ili

216

Game Elements

Splashes and Bubbles

When the player enters and/or moves through the water, the engine can

optionally produce splashes and bubbles. To create a splash when the player

enters the water (near) vertically, do the following.

datablock PlayerData(splashAndBubble) {

//

// 1 world unit/s or greater causes splash

splashVelocity = 1.0;

// Particle Emitter DB for splash

splash = “splashPED” ;

// Angle of incidence <= 45 for splash

splashAngle = 45.0

bi

In this sample, if the player is moving at 1 world unit per second or greater

and the angle of incidence (entry angle) with the water is less than or equal

to 4S degrees, the splash PED will play. This means a splash requires a near

vertical drop to happen.

To make the player emit splashes while moving through the water, do the

following.

datablock PlayerData(splashWhileMovingHorizontally) {

//

// Splash at 0.25 world unit/s or greater

splashVelEpsilon = 0.25;

// Splash Particle Emitter DB #0

splashEmitter[0] = “splashPEDO”;

// Splash Particle Emitter DB #1

splashEmitter[1] = “splashPED1” ;

li

To produce bubbles for a period of time each time the player moves in water,

do the following.

Gatablock PlayerData(bubbleDuringAndAfterMoving) {

//

// Bubble Particle Emitter DB

splashEmitter[2] = “bubblePED” ;

// Ticks to froth (bubble) for (1/3 sec)

bubbleEmitTime = 10.0;

Gameplay Classes

Sounds and Sound Modifiers

In addition to particle emission, the player can produce a series of sounds.

Here is an example.

datablock PlayerData(exitWaterSoundSample) {

//

// Make sound when exiting at 2+ world units/s

exitSplashSoundVelocity = 2.0;

exitingWater = “myExitSoundAudioProfile” ;

};

In this sample, the trigger event is exiting water at a velocity greater than

exitSplashSoundVelocity. When this event occurs, the exitingWater

audio profile is played.

In addition to the above sound and its sound modifier, there are many,

many more such pairs. Each of these pairs follows the same behavior as the

one we just examined. A sound will be played if an audio profile for the sound

is specified, and if the conditions of the sound’s modifier are met. Please refer

to Appendix A.3, “Console Objects’ Fields and Methods Quick Reference,” for

a complete listing of the various player sound fields and their associated trig-

gers and/or modifiers.

Property Maps

There is a file named “propertyMap.cs” located under the data subdirectory.

In this file, you’lI find statements like the following.

addMaterialMapping(“grass” , “sound: 0” , “color:

0.46 0.36 0.26 0.4 0.0”);

This statement associates some data with a texture (material) named “grass”.

One of these bits of data is the sound number associated with this mate-

rial. You can add materials as suits your needs. The complete list of possible

sounds are in Table 7.3.

7.3.3 Player Physics

The Player class adds a new set of physical parameters on top of those inher-

ited from ShapeBase and ShapeBaseData.

Forces and Factors

In this section, we’ll briefly discuss the fields that limit player motion. Some-

what later (Section 7.4), we’ll talk about how the player is made to move.

Chapter 7

Table 7.3.

Sound types.

Sound Sound Type

0 Soft

1 Hard

2 Metal

3 Snow

217

Part Hl

Table 7.4.

Forces and factors limiting

player motion.

218

Game Elements

These forces and factors are all r elatively straightforward. We’ll discuss the

less obvious ones in Table 7.4. All velocities are in world units per second.

Force/ Factor Purpose

Forward and Backward Motion

maxForwardSpeed Maximum forward velocity.

maxBackwardSpeed Maximum backward velocity.

Sideways Motion

maxSideSpeed Maximum sideways velocity.

General Horizontal Motion

horizMaxSpeed Maximum horizontal velocity on ground, in air, or

in water.

horizResistFactor Delta factor used to determine how much of
horizResistspeed is removed from current
velocity.

horizResistSpeed Velocity at which horizontal resistance kicks in.

Jumping

jumpDelay Forced delay between jumps (in ticks).

jumpForce Force applied to player on jump. Should be less
than 40,000 * mass.

jumpEnergyDrain Drain this many energy points for every jump.

jJumpSurfaceAngle Cannot jump if surface angle equal to or greater

to this many degrees.

maxJumpSpeed Cannot jump if running faster than this.

minJumEnergy Cannot jump if energy lower than this.

Running

runEnergyDrain Drain this much energy per tick while running.

runForce Accelerate player by this much per tick as a

result of a move (command). Should be less than
40,000 * mass.

runSurfaceAngle Cannot accelerate if surface angle equal to or

greater to this many degrees.

Upward Motion

upMaxSpeed Maximum velocity allowed in the positive z

direction.

Gameplay Classes Chapter 7

Fe ES Hts thes be Wh <2 p -er¢ i ry

ss Force/Factor | Purpose ere ae

upResistFactor Delta factor used to determine how much of

upResistSpeed is removed from current
velocity.

upResistSpeed Velocity at which vertical resistance kicks in.

Underwater Motion

maxUnderwaterForwardSpeed Maximum underwater forward velocity.

maxUnderwaterBackwardSpeed | Maximum underwater backward velocity.

maxUnderwaterSideSpeed Maximum underwater sideways velocity.

Recovery

recoveryDelay Number of ticks to stay in recovery mode after

hard fall.

recoveryRunForceScale Scale factor to apply to horizontal motion while in

recovery mode.

Resist Factors

The resist factors in Table 7.4 may not be entirely clear at first glance. TGE

provides resist factors for horizontal and upward vertical motion. These are in

addition to the drag field provided by ShapeBaseData. The general equation

for these resist factors is as follows.

if (velocity > resistVelocity) {

currentVelocity -= resistVelocity * resistFactor * timeDelta;

}

In other words, once resist speed is achieved, resistance is applied by a factor

of that resist speed.

Recovery Delays

When the player falls from a great distance, the landing is considered to be

hard. TGE treats hard landings in a special way. As soon as a hard landing

occurs, the player switches into “recovery mode.” This recovery mode lasts

for recoverDelay ticks. During this time, the player’s run acceleration is

modified by a factor of recoveryRunForceScale. The general equation for

this is as follows.

if (ElapsedTimeSinceHardFall <= recoverDelay) {

Table 7.4 (continued}.

currentVelocity += currentAcceleration * recoveryRunForceScale;

219

Part lt

220

Game Elements

impacts

The player can collide with objects just like any other ShapeBase-derived

object. In addition to this collision detection, a new kind of collision has been

added, These collisions are called impacts. There are two kinds of impacts,

those with the ground and those with other objects.

General impacts

A velocity threshold can be set, above which a collision is determined to be

a general impact.

Gatablock PlayerData(generaliImpact) {

//

// Collision is Impact at >= 10 world units/s

minImpactSpeed = 10.0;

i

Impacts with the Ground

A velocity threshold can be set, above which a collision is determined to be

a ground impact.

datablock PlayerData(groundImpact) {

//

groundImpactMinSpeed 8.0;

groundImpactShakeAmp = “8.0 8.0 12.0”;

groundImpactShakeDuration = 1.0;

groundImpactShakeFalloff = 0.5;

groundImpactShakeFreq = “10.0 10.0 10.0”;

hi

In the above sample, any impact at over 8 world units per second is consid-

ered to be a ground impact and thus fires the ground shake effect. The camera

is shook with the specified amplitude and frequency, falling off by a factor of

50 percent per tick to nothing over 1 second.

Impacts and Recovery {Mode}

As with a hard fall, impacts will automatically cause the player to enter recov-

ery mode. If the player is squatting every once in a while for no particular

reason, it is probably because the impact velocity settings are too low.

Step Height

There is a factor named maxStepHeight that limits how great a positive

change in elevation must be before a player cannot step up. If the elevation

Gameplay Classes Chapter 7

change in a particular direction is greater than this value, the player will not

be able to walk in that direction. The only way to get over this step is by try-

ing to jump over it.

7.4 Controlling The Player

So far, we’ve talked about how the motion of the player is limited and param-

eterized by fields in the PlayerData datablock. Now, let’s talk about how we

control our player’s translations and rotations in the world.
A frequently asked

7.4.1 Movement Globals question is, “ls there
a way to dynamically

TGE has a set of global variables that interact to determine if the control object scale my player's

translates or rotates. Additionally, the translation factors are further modified velocity?” I've seen

by a common global while the rotation factors are modified by the current | folks answer this with a
. : “no.” It should be clear

FOV (via script). no
(Pp) from this discussion

that that answer is

wrong. To scale your

All translations are modified (in script) by the global variable Snovement Speed. player's velocity, simply

This value is a multiplier that affects the input value and is later multiplied scale the value in

by the various speed factors discussed above to give a final acceleration. The smvActionValue.

general equation of how the translations are calculated in script is as follows. This value can be
between 0.0 and

Translations

// Result is clamped [0.0, 1.0] 1.0.
—_—_

SmvActionValue = %value * SmovementSpeed;

Later, inside the engine, our acceleration is calculated as follows.

acceleration = SmvActionValue * speedFactor * timeDelta

Subsequently, maximum velocity (ignoring drag and other factors) is as follows.

maxVelocity = SmvActionValue * speedFactor

The specific global variables (named action values corresponding to

SmvActionValue in the first equation) are as shown in Table 7.5. To see some

ActionValue—~—~~S«YYSss*t*~*«~<C*«é«‘ i eseription tae 7s,
SmvLeftAction Move left. Keyboard translation
$SmvRightAction Move right. global action values.

SmvForwardAction Move forward.

SmvBackwardAction Move backward.

SmvUpAction Move upward.

SmvDownAction Move downward. 221

Part Ill Game Elements

examples of the variables in use, examine the file “defawt.bind.cs” in either the

TGE Demo or the GPGT Lesson Kit.

Keyboard Rotations

If we so choose, we can add key mappings to enable camera/player/vehicle

yawing and pitching via keyboard instead of mouse. Each of these actions is

modified by the preference variable $Pref:: Input: :KeyboardTurnSpeed.

The general equation showing how these rotations are calculated in script is

as follows.

SmvActionValue = *value * SPref::Input: :KeyboardTurnSpeed;

The TGE Demo and GPGT Lesson Kit do not use these features, but they are easy

to hook up. Table 7.6 describes the global action values for keyboard rotations.

Table 7.6.

Keyboard rotation

global action values.

Action Value Description
SmvYawRightSpeed Yaw right.

SmvYawLeftSpeed Yaw left.

$mvPitchDownSpeed Pitch down.

SmvPitchUpSpeed Pitch up.

Mouse Rotations

All mouse rotations are modified (in script) by a script (provided in the TGE

Demo and GPGT Lesson Kit) named getMouseAdjustAmount (). This is

done to keep mouse yawing and pitching consistent across FOVs.

This function produces a multiplier that is used as follows.

SmvActionValue += getMouseAdjustAmount (%val) ;

The specific yaw and pitch global variables (named action values) are

described in Table 7.7.

Table 7.7.

Yaw and pitch

global action values.

222

SmvYaw Yaw camera by this amount.

SmvPitch Pitch camera by this amount.

7.4.2 The MoveMap
We're doing pretty well so far. We know how to define a player so that it has

the forces and factors we want, and we know how to tell TGE to translate/

rotate our character. Now, how do we attach that code to the keyboard and/or

mouse?

Gameplay Classes

In Chapter 9 we will discuss the ActionMap class, but to summarize its

purpose for now, the ActionMap is a class whose job it is to convert device

inputs into function calls. In both the TGE Demo and GPGT Lesson Kit, a

special action map has been defined. Its name is moveMap. moveMap is auto-

matically loaded when we start a mission. By default, it has been configured

to connect our keyboard actions to function calls which then calculate move-

ments using the global variables we discussed above. If you are curious about

this process, I suggest you skip ahead to Section 9.4, “Device Inputs and

Action Maps,” and then open the “default.bind.cs” file you will find in either

the TGE Demo or the GPGT Lesson Kit.

We’ve talked enough now about the Player and PlayerData classes to

jump into the actual creation of our test player. The accompanying disk con-

tains several player models, including the default Torque Orc and Blue Guy.

Additionally, it includes Simplest Player, which is a non-bipedal player with

no animations or other special features.

7.4.3 Maze Runner Lesson #6 (90 Percent Step}—
Simplest Player

For our game, we will need to make a very simple player. This player is nothing

more than a ball with three nodes (joints): floor, eye, and cam (Figure 7.2).

Copy Required Files

From the accompanying disk, please copy the file “\MazeRunner\

Lesson_006\mazerunnerplayer.cs” into “\MazeRunner\prototype\server\scripts\

MazeRunner”.

Now, edit the function onServerCreated() in the file “\MazeRunner\

prototype\server\game.cs” to look like this (bold lines are new or modified):

exec (“./MazeRunner/fireballs.cs”); // MazeRunner

exec (“./MazeRunner/mazerunnerplayer.cs”); // MazeRunner

Simplest Player Skeleton

Because we’re not going to animate this player, it doesn’t need very many

nodes (joints) in its skeleton. In fact it only needs a root node and the two

camera mount points (see Table 7.8).

_ Node See BSG a

floor The root node, specifying the physical bottom of the mesh.

eye The 1st POV camera node.

cam The 3rd POV camera node.

Chapter 7

Figure 7.2.

Simplest Player.

Table 7.8.

Simplest Player nodes.

223

Part Iii

224

Game Elements

Root Node

In this model, the root node is located at the bottom of the player, and the eye

and cam nodes are attached to it. This node defines the hattom of the player

and is where the mesh contacts the ground. The engine uses the lowest node

it finds in a mesh’s skeleton as the bottom of the shape; thus, if this node were

placed in the middle of the player, the player would sink into the ground.

Eye and Cam Nodes

The next node is the eye node. It is located on the “forehead” just above and

between the eyes. This is where the ist POV camera will be mounted.

The last node is the cam nade. This is located behind and above the

model. It doesn’t necessarily need to be here, but this model was designed

(in part) to show the difference between an eye mount and a cam mount. As

you've probably guessed, this is where the 3rd POV camera will mount.

Simplest Player Geometry

Visible Mesh

There isn’t much to say about this. It’s a ball. The player has one mesh and

one skin. We’re not using any IFLs or other fancy features.

Collision Mesh

We do nat need to define a collision mesh for instances of the Player class, as

the engine does this automatically.

Simplest Player Animations

Earlier | said that this player is not animated. | lied. OK, I didn’t exactly lie.

For any player to work, the root animation needs to be exported at a mini-

mum. Then, to get rid of some annoying warnings, you'll need to export the

other animations (shown in Table 7.9). Since the player isn’t going to need

these animations, I’ve left them blank and just exported the same sequence

for each.

The sequences for these animations are shown in Table 7.10, which

includes the following information.

¢ Animation. This is the (required) name for the animation sequence in

question.

® Start Key/End Key. These are the frames in which the named animation

begins and ends.

® FPS. This is the base frame rate at which the animation should be played.

® Cyclic. This indicates whether the animation should be played once or in
a cycle.

Gameplay Classes Chapter 7

¢ Blended. This indicates whether the sequence should be blended or not.

Finally, for each sequence there is a combined line something like “seq;

root = 1-2, fps=1, cyclic.” This is what you would type in for the default

exporter, but since we’re using the DTS Plus exporter, you will enter the

values via that exporter’s dialog.

Animation Description — Table 7.9.

root A default animation that plays while the player is at rest. Animation descriptions.

run Forward running animation.

back Backwards running animation.

side Sideways stepping animation.

jump Moving jump animation.

standj ump Stationary jump animation.

fall Long falling animation, which starts about 1 second after fall starts.

land Hard landing animation (played while in recovery-mode).

Animation | Start Key | End Key FPS Cyclic | Blended | Table 7.10.

1 2 1 Y N Sequences for animations.
root

seq: root=1-2, fps=1, cyclic

1 | 2 | a | oy Jon
run

seq: run=1-2, fps=1, cyclic

1 2 | 1 | Y | N
back

seq: back=1-2, fps=1, cyclic

1 | 2 | 1 | Y | N
side

seq: side=1-2, fps=1, cyclic

1 2 | 1 | N | N

jump
seq: jump=1-2, fps=1

1 | 2 | 1 | N | N
standjump

seq: standjump=1-2, fps=1
1 | 5 | 1 | N | N The default MS3D

fall exporter does not

seq: fall=1-2, fps=1 support blending and

many of the other

land : | 2] ! | N N cool special features

seq: land=1-2, fps=1 that DTS supports. So,

| suggest that you visit

the GarageGames site
and download the

“DTS Plus” exporter

{resource}.
225

Part ii

226

Game Elements

Simplest Player's Datablock

Because the datablock for this shape is a bit long, only the pertinent portions

are listed here.

datablock PlayerData(MazeRunner : BasePlayer }) {

shapeFile = ‘“~/data/MazeRunner/Shapes/Players/MazeRunner .dts” ;

boundingBox = “1.6 1.6 2.3”;

invincible = true;

groundimpactMinSpeed = 1000;

ImpactMinSpeed = 1000;

renderFirstPerson = false;

observeThroughObject = true;

//

be

This player has the following notable attributes.

1. it derives (copies) from the BasePiayer datablock that comes with the GPGT
Lesson Kit.

z2. As would be expected, the mesh we just built (or copied) is used.

3. The shape is a little bigger than the normal character, so we've increased
the dimensions of its bounding box from “1.2 1.2 2.3” to “1.6 1.6 2.3,” add-
ing an extra three-tenths of a world unit in the x and y dimensions.

4. The player is marked as invincible because we are not going to use damage
to determine if itis “dead.” Instead, we’ll kill it immediately if the mesh is

hit by a fireball or if it falls in the lava.

5. Impacts are effectively disabled by setting the velocity factors to values
greater than any velocity the player will be able to achieve in this game.

6. renderFirstPerson is disabled, meaning the mesh will not render while

the game view is lst POV.

7. The camera has been instructed to use the player’s camera settings
fobserveThroughObject is true).

To get the entire datablock, please copy “\MazeRunner\Lesson_006\

MazeRunnerPlayer.cs" to the “\MazeRunner\prototype\server\scripts\Maze-

Runner” directory.

Loading the Databilock

Now, edit the “\MazeRunner\prototype\server\scripts\game.cs” file and update

onServerCreated() to contain the following code (new code is bold).

:
exec(“./MazeRunner/flrebali.cs”); // MazeRunner

exec (“. /MazeRunner/MazeRunnerPlayer.cs”); // MazeRunner

Gameplay Classes Chapter 7

Using This Player

Now, to use this player instead of the Blue Guy we have been using thus far,

edit the “\MazeRunner\prototype\server\scripts\game.cs” file and modify

the highlighted code (below) in GameConnection::createPlayer() to

look like the following.

function GameConnection::createPlayer(%this, %spawnPoint) {

//...

// Create the player object

player = new Player() {

dataBlock = MazeRunner; // Change this line

client = %this;

};

//...

7.5 Vehicles

So far, we have talked about game view, cameras, and players (the first cat-

egory of avatars). Now we will discuss vehicles, the second category of avatar.

TGE provides classes for making the following vehicle types.

© Wheeled vehicles. Ground vehicles with four, six, or eight tires.

¢ Hover vehicles. Ground vehicles with no tires. is There are

e Flying vehicles. Science-fiction-style air vehicles. We do not discuss working samples

this vehicle type here (although a working sample is provided). of each type of
vehicle included in

- : the GPGT Lesson Kit,
7.5.1 Vehicles Overview and a full explanation

Vehicles share many traits, and all three vehicle types derive from the same of how they were

base class. So, we’ll talk about vehicle geometries, nodes, particle emissions, | Created ts included in
and animations as a group. We will follow this with a discussion of the base the appendices. All of

these vehicles were

classes VehicleData and Vehicle. Then, we’ll talk about mounting and dis- created and animated

mounting vehicles. with MilkShape 3D, a
reasonably featured

Vehicle Geometries (Meshes) and low-cost tool.
——$—_—

Just as the player must have some kind of geometry (mesh or meshes), so

must a vehicle. Each type of vehicle has a minimum set of required geom-

etries. These basic geometries are described in Table 7.11.

Besides visual geometry and the one collision mesh, another kind of

geometry can be included in your models—a second type of collision mesh

named LOS (line of sight). See Table 7.12. 227

Part Ill Game Elements

Table 7.11. Geometry © oie Description

Vehicle geometries. Chassis The body of the vehicle. This can be complex or very simple.

A simple nonconcave collision mesh. This is the primary collision
Collision-1 mesh used for the vehicle.

It is suggested that this mesh not have more than 20 vertices
because collision calculations are quite CPU-intensive and the time

required increases with the complexity of the mesh.

Tire This is only required for the WheeledVehicle class.

Table 7.12.

Line-of-sight collision

mesh.

228

Geometry | = ____ Description

LOSColI-9 .. LOSCol-16 Line-of-sight collision meshes. These meshes are used for
registering the impact of projectiles and other line-of-sight—

dependent collisions like ray-casts.

In practice, you may specify more than one collision mesh, but this is not

suggested. However, multiple LOS meshes are acceptable and quite normal to

encounter.

General Vehicle Nodes

Another part of a model’s construction is the set of nodes (or joints) to which

the mesh attaches. In TGE, the majority of these nodes are used by the engine

to attach particle effects, and the remaining two are used for attaching the

camera (Table 7.13).

Not all nodes are used by all vehicles and not all vehicles have all nodes

(Table 7.14).

As previously mentioned, some of the nodes are used to mount particle

emitters. Table 7.15 specifies what particle-emitter field (in a datablock) is

associated with what node.

The emitters attached to a vehicle will activate at various times. Table

7.16 specifies when the emitters will be activated (not all these emitters are

attached to nodes).

Vehicle Animations

Vehicles can have several animations. In addition to the damage animations

that are inherited from the ShapeBase classes, vehicles have the new anima-

tions in Table 7.17.

All of these animations are blended. Not all animations are available in

all vehicles. Table 7.18 specifies which vehicles use which animations. Addi-

tional animations can be provided but must be activated from script.

Third-person camera position.

Gameplay Classes

contrail0 .. contrail3 Particle-emitter mount. Simulates contrails.

eye First-person camera position.

hubd .. hub7 Helper nodes that specify the location of the tires.

JetNozzle0 Particle-emitter mount. Simulates thrusters in rear of vehicle.

JetNozzle1

JetNozzle2 Particle-emitter mount. Simulates thrusters in front of vehicle.

JetNozzle3

JetNozzlex Particle-emitter mount. Simulates thruster on bottom of vehicle.

mount0 .. mount31 General mount points that can be used for anything. However,
0 is normally the driver mount-point, and 1..10 are passengers,

gunners, turrets, etc.

cam optional optional optional

contrail0 .. contrail3 _ optional

eye optional optional optional

hub0 .. hub7 optional optional optional

JetNozzled _ optional optional

JetNozzle1

JetNozzle2 _ optional optional

JetNozzle3

JetNozzleX _ optional optional

mount0 .. mount31 optional optional optional

contrailO . . contrail3 trailEmitter

JetNozzled forwardJetEmitter forwardJetEmitter

JetNozzle1

JetNozzle2 backwardJetEmitter backwardJetEmitter

JetNozzle3

JetNozzlex downJetEmitter downJetEmitter

Chapter 7

Table 7.13.

Vehicle nodes.

Table 7.14.

Use of nodes by vehicle

type.
Although the cam and

eye nodes are labeled

“optional,” you must have

at least one of them. If

neither is present, the

camera will mount to the

centroid of the vehicle.

Also, be aware that all

nodes can be animated,

including the cam and eye

nodes.

Table 7.15.

Particle-emitter fields

associated with nodes.

229

Part Ill

Table 7.16.

Activation of emitters.

Table 7.17.

Vehicle animations.

230

Game Elements

ue

contrailO ..

 When velocity

contrail3 exceeds
minTrailSpeed.

JetNozzle0 _ On forward thrust. On forward thrust.
JetNozzle1

JetNozzle2 On backward thrust. On backward thrust.

JetNozzle3

JetNozzlex _ On upward thrust. On upward thrust.

dustTrailEmitter — Velocity > 0 && _
Elevation <=

triggerTrailHeight

Emits from rear of vehicle.

tireEmitter While moving _ _
from tires.

When vehicle is within triggerDustHeight of ground.

dustEmitter Please note that this emitter uses colors specified for terrain in
propertyMap for that terrain texture, or all white if not found. Dust
rises from ground beneath vehicle to dustHeight.

damageEmitter[0] | If vehicle has sustained damage percentage greater than

damageEmitter[1] | damageLevelTolerance[n], then damageEmitter[n] is
damageEmitter[2] | activated for emitters 0 and 1. Emitter 2 is only activated if the

vehicle is damaged and underwater. Damage particles are emitted at

a random point at a distance of damageEmitterOffset from the

vehicle’s centroid. Additionally, numDmgEmitterAreas specifies if we have 1 or 2 emitters specified.

activateBack An animation that occurs when the vehicle is thrusting

(accelerating) forward.

activateBot An animation that occurs when the vehicle is thrusting

(accelerating) upward.

brakelight An animation to turn the brake lights on and off. Usually

implemented with an IFL.

maintainBack An animation that occurs when the vehicle is gliding forward.

maintainBot An animation that occurs when the vehicle is gliding upward.

springO spring? | Blended animations used to animate the suspension for

wheeled vehicles.

steering Blended animation to turn the steering wheel when wheeled

vehicles turn.

Gameplay Classes

Animation _

activateBack — optional optional

activateBot — _ optional

brakelight optional _ _

maintainBack — optional optional

maintainBot — _ optional

springO .. spring? optional _ _

steering optional _ _—

7.5.2 Vehicle and VehicleData

These classes are virtual parents to the three concrete classes used for wheeled,

hover, and flying vehicles. The Vehicle class has no fields, variables, or meth-

ods. So, we only need to discuss the datablock.

Vehicle Physics

In general, vehicle physics can be quite difficult to understand and to manipu-

late. So, ’ll give a short description of the various fields and their purposes,

then I’ll supply sample vehicles with working values in the GPGT Lesson Kit.

After that, you’ll need to experiment.

Integration

The integration field tells the engine how many times to try to resolve the

current motion. The value in this field determines the time slice used. Larger

values equal smaller time slices and more iterations. Choosing a value for this

field is a tradeoff of stability vs. time. Smaller time slices mean a more stable

evaluation, but we pay for these multiple updates in computing time.

In short, a value of about 4 is good for hover and wheeled vehicles, but

you may need a higher value for flying vehicles or high-velocity vehicles.

Experimentation will tell.

Friction and Restitution

The bodyFriction field determines how much velocity is lost to rubbing on

impact with a surface. This can have some odd side effects, however, so you

may want to make this value either very small or zero (in the case of flying

vehicles).

The bodyRestitution tells us how much the vehicle will “bounce

back” when it hits something. This field should be less than 1. A good value

is between 0.4 and 0.5.

Chapter 7

Table 7.18.

Use of animations by
vehicle type.

231

a

Part Ill

232

Game Elements

contactTol and collisionTol

The field contactTol is compared to the result of a dot-product calculation

to determine if a collision occurred. Thus, if you want to cause collisions to be

largely ignored, this value should be near to 1.0. However, this value is nor-

mally about 0.1, which is an angle of incidence of about 6 degrees; i.e., any

contact at an angle betweeen about 6 and 90 degrees registers as a collision.

The field collisionTol is a value that specifies the “don’t care” dis-

tance for a collision. If the possibly colliding points are farther apart than

collisionTol, the collision doesn’t happen. This, too, is usually set to 0.1

(world units).

massBox and massCenter

The mass of a vehicle is treated as if it is evenly distributed within a sphere.

The diameter of the sphere is normally equal to the distance between opposite

corners of the vehicle’s world bounding box. However, for wheeled vehicles,

if the massBox field is greater than 0, this value is used instead. This way, we

can compact the mass or spread it out as meets our needs.

The massCenter field is a three-element floating-point vector specifying

an offset from the vehicle’s centroid. This is used to move the massBox away

from the vehicle’s centroid.

minDrag and maxDrag

In addition to the normal drag value provided by ShapeBaseData, we can

specify aminDrag and maxDrag. However, these values are only used for fly-

ing vehicles. minDrag is the minimum drag that will always be applied to the

vehicle. maxDrag is now a dead variable and not used at all.

Steering

We can specify a maxSteeringAngle in radians for all vehicle types. This

will limit how quickly we can steer in a new direction. Smaller values equal

slower turns, and larger values equal faster turns.

Jetting

Interestingly, all vehicles can use a jetForce, which is a generic forward

thrust value (in the case of wheeled vehicles, applied in addition to frictional

forces).

Jetting is activated when move trigger three is nonzero ($mvTrigger-

Count3 > 0).

In order to jet, the vehicle must have more energy than minJetEnergy (by

default this is 1). Lastly, when jetting, jetEnergyDrain energy is removed

from the vehicle per tick. The default for jetEnergyDrain is 0.8.

Gameplay Classes

Impacts and Impact Sounds

Like the player, vehicles can have impacts. Likewise, there are sounds associ-

ated with these impacts. Because I’ve talked about this concept in Section

7.3.2, I will not discuss it further and just refer you to Appendix A.3, “Console

Objects’ Fields and Methods Quick Reference,” for specifics.

The Camera

We have already discussed our ability to control the camera in Section 7.2:

the camera can Jag the vehicle when it accelerates and will do so when we

set cameraLag to a positive value. This lag is recovered at a rate of camera-

Decay.

The other thing we can do to the camera is offset it (vertically) by

cameraOffset world units from the 3rd POV mount point (cam).

collDamage fields

Neither the collDamageThresholdvel nor the collDamageMultiplier

field is used by the engine. These are for scripting purposes only.

That is it for our discussion of the VehicleData class. Now, let’s discuss the

general topic of mounting and dismounting, as well as how to use a vehicle

as the player.

7.5.3 Vehicle Mounting

A vehicle can either be mounted (player sits on or in it) or it can substitute for

a player. Furthermore, any of the following actions can occur.

1. Player mounts vehicle on collision or in response to other action.

2. Player starts in the mounted position.

3. Player is replaced with vehicle on collision or in response to other action.

4. Player starts as vehicle.

Each of these cases requires a set of console methods and some dynamic

fields in the vehicles/players. Because there are innumerable correct ways

to handle these cases, it might seem a bit daunting the first time you have to

solve this problem. So, sample flows and source code are provided with the

GPGT Lesson Kit to handle cases 1, 3, and 4. We won’t cover case 2 directly,

but it can be derived from the other cases.

Mounting Vehicles

In the GPGT Lesson Kit, when a collision occurs between a Player object

and a Vehicle, the engine wil! attempt to fire the onCollision() callback

Chapter 7

233

Part Ill Game Elements

for both datablocks. The playerData::onCollision() method provided

with the Lesson Kit will then attempt to mount this player to the vehicle, if

the vehicle is mountable and if the player is not already mounted to another

vehicle (Figure 7.3).

PlayerData: :onCollision(). Fires ona collision and calls the Player-

Data: :doVehicleMount () if the collided object is a vehicle, it is mount-

able, and the player is not already mounted to a vehicle.

PlayerData: :doVehicleMount(). Handles the work of mounting

the player to the vehicle. This method also manually notifies the vehicle

that an object (the player) is being mounted to it by calling the vehicle’s
onPlayerMount () method.

VehicleData: :onPlayerMount (). This method is called by doVehicle-

Mount () in the case that a player gets mounted to the vehicle. The purpose

of this method is to do any special animations or other actions you might

require in the case of a mounting.

PlayerData: :onMount (). This is automatically called by the engine as a

result of PlayerData::doVehicleMount () calling the engine mount ()

Figure 7.3.

Mounting vehicles.

Table 7.19.

Dynamic fields for

mounting.

234

mounting PlayerData:: VehicleData::

‘
}
=i —_ ==,

ae
=

Succestullly Mounted?

~

onPlayerMount()

Time

canMount A Boolean value specifying whether the [true , false]

player is allowed to mount a vehicle.

isMounted A Boolean value denoting whether the player [true , false]

is already mounted to something.

isMountable A Boolean value determining if this vehicle [true , false]

can be mounted.

Gameplay Classes

console method to mount the player object to the vehicle. In this code, we

do some cleanup work on the player, like resetting the transform, placing

the player in the sitting pose, and setting the vehicle as the new control
object.

Mounting Dynamic Fields

In order to do the work of mounting or substituting, we require that there be

a few dynamic fields present in the player object and the vehicle’s datablock

(Table 7.19).

Dismounting Vehicles

Assuming that the player is mounted to a vehicle, we may wish to allow for

dismounting to occur. The GPGT Lesson Kit provides source code to handle

this as a result of a key press, but dismounting can easily be made to result

from other actions, too (Figure 7.4).

¢ User Action. The user requests a dismount via mouse click or button press.

(See the “Vehicle Action Maps” section below.)

® PlayerData: :doDismount(). Attempts to dismount from the current

mount point. This method manually calls the vehicleData::onPlayer-
Dismount () method to notify the vehicle that the dismount is occuring.

® VehicleData: :onPlayerDismount(). This method is provided so that

the vehicle can play a special animation or do other work when the player
dismounts.

Vehicle Action Maps

It is important to know that TGE has code that automatically checks to see if

a player is mounted to an object. When this is true and when a moveTrigger

two event (SmvTriggerCount2 > 0} is received, the engine will automati-

cally call the doDismount () callback. In both the TGE Demo and GPGT Les-

son Kit, the spacebar is tied to $SmvTriggerCount2. 50, you do not need to

modify or add an action map unless you wish to remap the trigger to some-

thing besides the spacebar.

Dismount

Requested

PlayerData:: VehiclsData::

Tima

Chapter 7

Figure 7.4.

Vehicle dismounting flow.

235

Pant Il

236

Game Elements

7.5.4 Wheeled Vehicles

Now that we’ve discussed general vehicle information, we’ll discuss the spe-

cific vehicle types supported by TGE. The first of these is the wheeled vehicle.

Wheeled vehicles in TGE support 4, 6, and 8 tires. The chassis of the vehicle

is represented by the WheeledVehicleData and WheeledVehicle classes, the

tires by the WheeledVehicleTire class, and the suspension by the Wheeled-

VehicleSpring class. We’ll talk about each of these in turn.

WheeledVehicleData and WheeledVehicle

These classes inherit all the fields in the VehicleData and Vehicle classes,

respectively. In addition, the WheeledVehicleData class brings some new

fields and features.

The Engine

A wheeled vehicle is moved by its engine. The power of this engine is defined

by the engineTorque field. Also, the engine can be used to slow the vehicle.

That is, when the engine is not engaged in accelerating or maintaining the

vehicle’s current velocity, it can apply a braking force. Simply set engine-

Brake to a positive value, and the engine will slow the car by this factor.

Braking

In addition to engine braking, we can actually apply a braking force. The brake

force is set using the brakeTorque field. It uses equivalent units (applied

oppositely) to engine torque.

There is a small catch to braking. Braking is caused by SmvTrigger-

Count2 being nonzero. This is the same trigger associated with player jump-

ing. So, braking will not work if the player is mounted to a vehicle.; i.e., only

vehicles used as the player will brake.

The Wheels

We need to specify a maximum angular velocity (rotational rate) for our tires.

This keeps them from over- or underrotating and is used to tune the look of

our tires. It does not affect how the vehicle drives. This effect is controlled by

the maxWheelSpeed field.

Sounds

Our vehicles can make noises under various circumstances. When the engine

is engaged, TGE will try to play the engineSound audio profile. When jetting

(SmvTriggerCount3 > 0), TGE will play the sound specified by jetSound.

If the vehicle skids or the tires otherwise break friction, TGE will attempt to

play the sound specified by squealSound.

Gameplay Classes

WheeledVehicieTire

A wheeled vehicle can specify a different tire datablock for each tire if we so

choose. The tire datablock is named “WheeledVehicleTire” and has the fol-

lowing features.

Friction

Tires exhibit both static and dynamic friction. If you have not studied dynam-

ics, this may mean nothing to you. In real life dynamics, there are two kinds of

friction: static and kinetic (some texts will say there are three: static, kinetic,

and breaking).

Static friction is the friction found between two surfaces when both sur-

faces are stationary. Static friction is what keeps the objects stationary. When

a force is applied that overcomes static friction, the object to which the force

is applied will begin moving. This is named staticFriction in TGE.

When an object is moving, it usually has a different friction. This friction

is known as kinetic friction, and is named kineticFriction in TGE. Nor-

mally (for most materials), static friction is higher than kinetic friction.

So, what does this mean in TGE terms? Well, TGE simplifies real-world

physics, but it does respect these two factors. While a tire is either stationary

or moving and has not yet slipped, staticFriction is applied. However,

when the torque applied by the engine results in a force higher than static-

Friction, the tire will begin to slip. At this point, TGE starts to use kinet-

icFriction in its calculations.

In short, with a lower kineticFriction, a tire that is slipping will con-

tinue to slip until the applied force is reduced or removed.

Longitudinal Forces and Factors

A tire exhibits forces in two directions (springs handle the third for TGE). The

forward/backward force is known as longitudinal force (Figure 7.5, left). In

TGE, this force is defined by the longitudinalForce field.

There are two additional Jongitudinal factors that act in concert with

longitudinalForce. Their purpose is to produce a more realistic tire action.

Real tires are like springs and deform slightly when forces are applied to them.

However, they only deform so much before acting rigid (or exploding, which

they do not do in TGE). The springiness of a tire is set using longitudinal-

Damping. This damping is attenuated by a factor logitudinalRelaxation

(Yes, this field is misspelled. It has been and will remain spelled this way to

prevent breaking people’s scripts).

To make your tires behave like rubber, make longitudinalDamping

about 10 percent of the value of longitudinalForce, and you can adjust

this by making logitudinalRelaxation between 0.0 and 1.0.

Chapter 7

237

Part Ill Game Elements

Figure 7.5.

Longitudinal and lateral

forces.

Figure 7.6.

Upward force and

damping.

{1

238

<>
Longitudinal Forces Lateral Forces

(top down view) (top down view)

Lateral Forces and Factors

The next force tires produce is side-to-side or lateral force (Figure 7.5, right).

Lateral force is determined by the field lateralForce. Similarly to longitudi-

nal forces, we have lateralDamping and lateralRelaxation factors.

Physical Parameters

Beyond forces, tires themselves have both a mass and a radius. The mass of

each tire contributes to the vehicle’s total mass. The radius field is important

because it defines the bounding-box size for the tire. By default, the radius is

0.6 world units. So, if you make an abnormally large or small tire, be sure to

adjust this value.

Restitution

The restitution field in tires is no longer used.

WheeledVehicleSpring

The final component in a wheeled vehicle is the suspension. The suspension is

defined by the WheeledVehicleSpring datablock. As with tires, each tire loca-

tion can have a unique spring. These springs have the following features.

Upward Force and Damping

To frame the discussion of this next force, think of the tire as being on the

ground. Then, the third force component is the force that pushes up on the

vehicle, keeping it off of the ground (Figure 7.6). This pushing force is defined

by the field force in the spring datablock.

By default, the spring will push with all its force when the spring is fully

compressed, and with no force when it is fully extended. The force varies

linearly between these two extensions.

This spring force can be attenuated when the tire is traveling up and

down. If we specify a value for the damping field, this force will be factored

into the spring force. A good ratio for damping is about 20 percent of force.

Gameplay Classes Chapter 7

 Tires Are Even Tires Are Uneven

| No Anti-Sway Anti-Sway Kicks In

The Anti-Sway Effect

An odd thing can occur when one tire hits a stone or some other obstacle. It

can temporarily cause that part of the car to be higher than the rest of the car;

i.e., the car is now off kilter. To compensate for this, TGE provides an anti-

sway factor (see Figure 7.7). The anti-sway force, specified by the antiSway-

Force field, is used to rebalance the vehicle (at least partially). In general,

if the anti-sway value is lower than the normal force (antiSwayForce <

force), the car will tilt away from the raised tire. If the values are equal, the

opposite spring will try to equalize the force, levelling the car. It can only do

so to the extent of the difference between the two springs’ extensions. The

anti-sway force equation is as follows.

antiSway = (oppositeWheelExtension - wheelExtension) *

spring->antiSwayForce;

Length of Travel

Lastly, we can specify the length of our spring. This length limits the distance

the tire hub may travel from its topmost position to its bottommost position

(Figure 7.8). The length is specified by the field length and cannot be zero.

Powered Wheels

The motivational force, the force that moves your vehicle, comes from the

tires. By default, all wheels are enabled and thus produce motivational force

during the game, but at any time after the creation of a vehicle, we may

choose to disable or re-enable individual wheels. This will have an effect on

how the vehicle steers and drives in general. To set the power on a wheel,

simply use the following method.

// De-power left-front tire

Ssvehicle.setWheelPowered(0 , false);

Figure 7.7.

The anti-sway factor.

Figure 7.8.

Length of travel of hub.

_}

The tire locations on

a wheeledVehicle are

numbered 0 through 7
and are ordered left-to-

right and front-to-back.

So, for a four-wheeled

vehicle, the tire

positions are: 0—left- _ front, I—right-front,

wee \ 3—right-rear.

2—left-rear, and
239

Part I)

240

Game Elements

Remember, wheels are ordered front left, front right, second front, ..., left rear,

right rear. Also, trying to power or depower a wheel that does not exist will

cause an error, so be sure your script is aware of the tire count for the vehicle

it is modifying.

7.5.5 Hover Vehicles

The next category of vehicles is the hover vehicle. This vehicle is a ground vehi-

cle that remains a short way above the ground. It has no tires to move or turn

and instead uses “thrusters” for these maneuvers. There are only two classes

involved in making these vehicles: HoverVehicleData and HoverVehicle.

HoverVehicleData and HoverVehicie

These classes inherit all the fields in the VehicleData and Vehicle classes,

respectively. In addition, the HoverVehicleData class brings some new fields

and features.

Horizontal Motion

The motion of the hover vehicle in the horizontal plane is controlled by three

forces: mainThrustForce, strafeThrustForce, and reverseThrust-

Force. The first force is applied to forward motion, the second to left-right

motion, and the third to reverse motion.

Drag

There is a field named dragForce that modifies the maximum rate of the

hover vehicle. Setting this value too high will cause the vehicle to not move

at all. Experimentation is required, but a good starting value is 1, then move

upward.

vertFactor and FloatingThrustFactor

The first of these two factors (vertFactor) is multiplied into the vertical

component of drag. It defaults to 0.15 but may be increased to produce more

drag in the vertical direction.

The second factor (FloatingThrustFactor) is used to modify general

thrust strength depending on whether the vehicle is floating (not in contact

with water, terrain, or interior). If the vehicle is not floating, 100 percent of the

force is applied. However, if the vehicle is floating, the general force equation

becomes the following.

force = FloatingThrustFactor * force;

This factor can be between 0.0 and 1.0 and defaults to 0.25, meaning that

floating thrust is only one-quarter that of nonfloating thrust. The purpose here

Gameplay Classes Chapter 7

is to keep the vehicle reasonably powered while in the air, but to make the

thrust very strong while in contact with water, terrain, or an interior.

Floating Gravity

When a hover vehicle is not in contact with water, the terrain, or an interior,

the total amount of gravity applied to the vehicle will be as follows.

gravityForce = local gravity

However, once the vehicle contacts any of the aforementioned obstructions,

we can reduce the force of gravity by a factor of floatingGravMag (can be

between 0.0 and 1.0). This gives us the following gravity force equation.

gravityforcé = local gravity * floatingGravMag

The purpose of this is to allow a nonfloating vehicle to get back in the air

more easily.

Hovering

There is a force called stabSpringConstant. This field must be set to a

value equal to two times the mass of the vehicle or higher, or the vehicle

will sink to the ground. The field stabDampingConstant acts to keep the

hover vehicle from bouncing around too much and can be higher than stab-

SpringConstant. In fact, the higher it gets, the less bounce there is when

hovering over terrain with abrupt elevation changes.

Jetting Around

If jetting is active (S$mvTriggerCount3 > 0), the turboFactor is applied.

The current calculated thrust is multiplied by the value in this field if it is

nonzero.

Stabilizers

The hover vehicle has a nonvisible bounding box that is used to “stabilize” it.

This box grows as the velocity of the hover vehicle increases and shrinks as

the vehicle reduces speed. We can limit the bounds of this box by using the

two fields stabLenMin and stabLenMax.

Rolling and Pitching

When the hover vehicle rolls and pitches, it can optionally glide in the direc-

tion of the roll or pitch. Simply set the fields rollForce and pitchForce

respectively to some nonzero value and the vehicle will move toward the roll/

pitch until it rotates back to vertical.
241

Part Ill

242

Game Elements

Keeping the Vehicle Upright

Because hover vehicles may travel over hilly and bumpy terrain, it is possible

that the vehicle may want to tip over. Therefore, the engine provides a force

for keeping the vehicle upright. This force 1s specified using the normal-

Force field. When a hover vehicle is tilted or canted, this force is applied to

right the vehicle so that it is parallel to the surface below it. It is not a strong

contributor, so keeping this high is a good idea.

Steering

There are two forces involved in steering our vehicle. The first is named

steeringForce and is the value applied in the direction of our turn. The

second is gyroDrag. This is a resistive force that trys to stop the turn.

Stay Put!

When the vehicle is not thrusting and should be sitting still, it may still slide

about, especially if there is a slope. To prevent the vehicle from constantly

sliding away, we can set two fields to nonzero values. First, we set a threshold

velocity brakingActivationSpeed. When the vehicle is not thrusting,

autobraking will begin to activate as soon as the speed of the vehicle is lower

than this. Once braking is activated, the force brakingForce will be applied

until the vehicle comes to rest.

Special Effects

The hover vehicle supports three new sounds: jetSound, engineSound,

and floatSouna. These sounds play while jetting, thrusting, and hovering,

respectively.

7.5.6 Alternate Mounting Positions

In our discussions, we have only talked about mounting to mount0, but it is

completely possible to mount to another mount node. We can blindly mount

our players to nodes, but the best way to handle multiple mountings is to

check to see if a node is available. To do this, you can use this piece of code

(slight modification of script found in the forums):

function findEmptySeat(%vehicleObj , %*mountPoints, %startNode) {

1f (0 >= SstartNode)

count = 0 ;

else

scount = %startNode ;

for (0 ; %count < SmountPoints ; S$countt++) {

Gameplay Classes

snode = $vehicleObj.getMountNodeObject (%1) ;

if (%node == 0) {

return %1;

}

}
return -l;

This method iterates from 0 to %mountPoints and returns the number of

the first mount point with no passenger. We can just mount our player to this

point, or we can go a step further and find the closest node and mount to it.

Chapier 7

function findNearestEmptySeat(S%playerOb} , tévehicleObj , SmountPoints) {

$nearest = 1000;

SmountNode = -l;

for($count = 0 ; %count < %SmountPoints ; Scount++) {

node = $vehicleObj .getMountNodeOb ject (%i);

if (%node == 0) {

SdistVec = vectorSub(%player.getWorldBoxCenter() ,

getWords(svehicleObj.getSlotTransform(%node , 0

SnodeDist = vectorLen(%$distVec });

if{ SnodeDist < Snearest) {

Snearest = %nodeDist;

SmountNode = %node

I
return %mountNode;

This function behaves much in the same way as the prior seat finder, but it

will return the node number for the nearest empty passenger position. Please

note that, for this to work, your nodes must be numbered O through 7.

7.6 Inventories

It would be fair to say that most games implement some kind of inventory

system. The purpose of these systems is to provide a set of mechanisms for

storing game items and for later retrieving them. The functions of an inven-

tory are varied, but at their most basic, they must provide the following mini-

mal set of features.

e Must be able to store items. This seems obvious, but what does it mean?

It means that, when an inventory item is encountered in the world, the
243

Part Ill

244

Game Elements

inventory system must provide a means of removing it from the world and
storing it for later retrieval.

Must be able to retrieve items. Given that the system has stored an item,

we will likely need to retrieve the item some time later. The inventory
system must provide a mechanism for retrieving the item from storage and
placing it back into the game world.

In addition to these mandatory features, it is usually beneficial to be able to

do the following.

Use an item. What is the use of having an item in inventory if it can’t be
used for anything? The bulk of responsibility for using should rest with the

item itself, but the inventory system must provide a means of getting at the

item’s use methods.

Flexibly handle different item types. The inventory system should be

flexible. For example, it would be nice if the system could easily be pro-

grammed to do the following:

1. pick up a coin and store it;

2. when a health power-up is encountered, use it if it is needed and store

it if not;

3. automatically mount and prepare weapon items if the player doesn’t

have an active weapon.

Limit item carrying. Lastly, an inventory system should be able to just say

no. That is, depending on the game genre, an inventory should not allow
certain items to be stored, or it should limit how many/much of an object

can be placed in it.

The TGE FPS Demo comes with a scripted inventory system that does some of

the above tasks as follows.

Objects are stored in the player object (the control object).

The responsibility for storing, retrieving, and using items is split between
the control object, the control object’s datablock, and the object being

stored/retrieved.

Storable items must be predeclared. That is, the control object must be told

what inventory items it can store.

Storable items are declared and accessed using datablocks as indices into
inventory arrays. This allows for item-specific behavior as well as a simple

way of referring to inventory slots.

It doesn't use the same methodology, nor is it as easily expanded, but the

basic TGE FPS Kit inventory can also be maximum-count constrained.

Having summarized the TGE inventory system, we will not be discussing it

further. Instead, we will be discussing the Simple Inventory System.

Gameplay Classes

7.7 The Simple Inventory System
(Simpleinventory)

The Simple Inventory System (subsequently referred to as SimpleInventory} is

provided in a fully functional state with the guide, so you could skip this chap-

ter and just use it. However, you’]] jearn a lot more if you continue reading.

SimpleInventory has the following attributes.

e It is script-based and will work with any TGE game.

e It is implemented with ScriptObjects and can be placed in any object or

stand alone. In effect, this allows any object to have an inventory or inven-

tories, further compartmenting and structuring game interactions.

e It is a generalized inventory system, designed to store nonunique items

referenced by their datablock names.

e Items are stored and referenced by their datablock, and thus items with

unique properties can be stored, but their uniqueness will be lost.

e An inventory can store any number of any type of datablock-identified

item.

e A maximum count limit can be set for any specific inventory item.

e Ajl methods that operate on SimpleInventory are scoped under the

SimpleInventory:: namespace.

« Inventory methods are provided for ShapeBaseData:: to enable a basic
set of SimpleInventory interactions:

« doPickup()—pick up one instance of an object,

¢ doThrow()~—throw or drop one instance of an object from inventory,

and

* doUse()—use an object from inventory.

e Inventory methods are provided for ItemData:: and Item:: classes to
complete the inventory functionality.

7.7.1 Designing SimpleInventory

Over the course of the next few pages, we will succinctly discuss the design of

SimpleInventory. This will reinforce some scripting topics we have discussed

previously as well as give insight into the system such that changing it (if you

should choose to} will not be too tedious.

Inventory Builder

Generally, it is better to use a builder (constructor, for you C++ folks), than to

hand-build complicated objects. So, we will use one for our inventory system:

Chapter 7

245

Part Ill

246

Game Elements

newSimpleInventory(%name)

Creates a new SimpleInventory object, with optional %name.

Prints error message(s)

Returns 0 if inventory failed to instantiate.

The inventory object returned by our inventory builder has the structure

shown in Figure 7.9.

: . . . Figure 7.9.
e Theinventory itself is aScript- Struct &; :

Object. ructure or inven Ory.

e It has an optional name (as sieripOeey /—___» {name}
provided to the builder func-

tion).

e It contains a SimSet named

knownltemTracking. This Sim- knownttemTracking »| | SimSet

Set is used to contain the IDs
of all items (datablocks) ever

stored in the inventory (this is used to simplify content tracking).

Specifying Stored Objects

We have a way to create our inventory object, now we want a way to identify

an inventory (storable) item.

As we Said above, SimpleInventory should be able to store items speci-

fied/identified by datablocks. This means we would like to be able to specify

our item datablocks something like the following.

datablock ItemData(bullet) {

// specific internal fields not important (yet)

);

Simple. The above datablock is no different from any other ItemData data-

block we would normally specify. This is good because it means we don’t

need to change our content-creation flow or remember any special rules.

Initial Contents

Next, we need to add a method for initializing the contents of our inventory.

setiInventoryCount(%*theSimpleInventory , tobjectName , %numbjects)

Set total number of %objectName objects in the inventory to

snumObjects.

Returns number of items succesfully set.

Gameplay Classes

If you’re not examining the code as you read, now would be a good time to

open a browser and take a quick peek at the code for this method (found in

“SimpleinventoryGeneral.cs”). This code is fully commented and should be

easy to follow. Feel free to peruse this in depth at a later time. For now, please

take note of the following important points.

e In order to avoid painful bugs, the SimpleInventory system validates argu-
ments and enforces some rules. This is a good practice in general and spe-
cifically when dealing with datablocks.

e Since it will do the same check frequently, the validation code is separated

out into a method that does the following.

¢ Verifies that SobjectName (item to be inventoried) is both an object

(exists) and is an ItemData datablock. This inventory system will only
inventory ItemData-derived objects, so this is a safe restriction.

¢ Forces the tobjectName into string format (vs. ID). Why? Recall that

datablock names are automatically converted to IDs in some cases.
Because we don't want to worry about this, during our day-to-day usage
of the inventory system, we'll just make sure that the system itself

watches for this and handles it. We need to be consistent when using
datablocks as indices. In this case, we're always going to use names

because they are easier to identify (than numbers) when using dump ()
and because we generally use names when referring to datablocks in
script,

Limiting Inventory Counts

We said above that this inventory system allows limits to be placed on indi-

vidual inventory item counts. To do this we need another inventory method.

setiInventoryMaxCount(%theSimpleInventory , %tobjectName , %*maxObjects)

Limits storage of t*objectName objects in the inventory to %maxObjects.

SmaxObjects can be: “”, 0, or N > 0. A value of “” clears any prior limit.

The limiting methodology used by SimpleInventory is not elaborate. Basically,

a limit can be unspecified (“” meaning no limit), zero (0), or some positive

value (N).

Remaining Basic Features

To this point, we have discussed how to create an instance of SimpleInventory,

how to specify an inventory (storable) item, how to initialize an inventory

instance, and how to limit inventory counts. What is left? Well, we still need

the following features.

Chapter 7

247

Part Il

248

Game Elements

e A means of getting an inventory count for any specific object.

getInventoryCount(%theSimpleInventory , tobjectName)

Purpose:

Get total number of tobjectName objects in the inventory.

Returns 0 if none found.

e A means of adding new items to the inventory.

addObject(%theSimpleInventory , sobjectName [, snumobjects])

Purpose:

Add one [or %numObjects] %tobjectName items(s) to the

inventory. Returns number of items succesfully added.

e A means of retrieving an item(s) from the inventory.

removeObject(%theSimpleInventory , tobjectName [, tnumobjects])

Purpose:

Remove [or %numObjects] %tobjectName item(s) from the

inventory. Returns number of items succesfully removed

(which may be less than requested count).

As can be seen, there really isn’t much to the design of a simple inventory

system. Next we’ll address how to use this inventory system.

7.7.2 Using Simplelnventory

Simpleinventory Callback Flows

TGE provides a set of callbacks that “fire” in response to various game events.

These callbacks are nothing more than console methods that are scoped to a par-

ticular class’ datablock. One of these callbacks is the onCollision() method.

onCollision() is called for all ShapeBase derivates and Projectiles when a colli-

sion occurs in the game. For now, we will limit our discussion to collisions between

ShapeBase-derived objects (Player objects specifically) and Iter objects.

Picking Up Objects

When a collision occurs between a ShapeBase object and an Item object, the

engine will attempt to fire the onCollision() callback for both objects’

datablocks. The SimpleInventory system uses the ShapeBaseData::on-

Gameplay Classes

Pick-up | SnapeBaseDeta:: Simpteinventory:’ temData: ttenc:

onCollision()

 \

-
Successful Pickup?

 Time

respawn()

Collision() callback to initiate pickups. Said pickups follow the flow

shown in Figure 7.10.

® ShapeBaseData: :onCollision(). Fires on a collision and calls the

ShapeBaseData: :doPickup() if the collided object is an Item.

© ShapeBaseData: :doPickup (). Checks to see if the owner object has an

inventory. If so, it calls the item’s ItemData: :onPickup() method.

¢ ItemData: :onPickup(). This method will try to place itself in the inven-

tory using the SimpleInventory::addObject () method. If the item

is successfully added to ShapeBase object’s inventory, onPickup() will

call Item: :respawn() to temporarily remove (hide) the object from the

world.

¢ ItemData: :onInventory(). Often it will be beneficial to have a place
to do some extra processing after picking up an item. For example, when

picking up a weapon, we would like to use the default flow (to reduce

redundant code) but have a simple way of handling mounting, ammo load-
ing, etc. In theory this could be done in the onPickup() by overriding,

calling the Parent::, etc. However, this will quickly become an intrac-

table solution for large games. Better is to have an item-specific callback
that is executed every time the inventory count for that item is modified.
The ItemData::onInventory() method fills this role.

e Item: :respawn(). Depending on the game type we’re writing, objects
that are picked up should either be respawned or removed permanently

from the world. The simple inventory system handles both of these cases.

If the dynamic field respawn is set to true in the item’s datablock, the

item is respawned. If not, the item is permanently removed from the world

if the pickup succeeds. The Item: : respawn () method does the respawn-

ing work. Items will respawn (become visible again) in $Item: : Respawn-

Time milliseconds.

Chapter 7

Figure 7.10.

Flow of pickups after

collision.

249

Part Ill

Figure 7.11.

Flow after a throw request.

250

Game Elements

Throw User Action ShapeBaseData:’ Simpleinvertory: ttemDeta- Herc

 '
Throwing/Dropping Inventoried Objects

Assuming we have an item(s} in our inventory, we may at some time wish

to throw (drop) it. This kind of action can be accessed through a key press

(as well as a myriad of other ways}. Key presses are handled by action maps.

When the action map dictates that a throw has been requested, it will use a

commandToServer () call to call the shapeBaseData: :doThrow() method

to start the throw flow (Figure 7.11).

Throw requested. The user requests a throw via mouse click or button press.

The action map is programmed to convert this client action into a server

action via the commandToServer() function (see “InventoryLesson.cs”
and “ServerCommands.cs”).

lessonMap.bindCmd(keyboard, “t”, “”,

“commandToServer (\’throw\’, InventorylItem.getID());”);

ShapeBaseData: :doThrow(). Checks to see if the owner object has an
inventory. If so, it calls the ItemData::onThrow() method. If the Item-

Data: :onThrow() method returns a new object handle, the ShapeBase-

Data::throwObject () method is used to do the throwing.

ItemData: :onThrow(). This method will try to extract one instance

of the item from the owner’s inventory using the SimpleInventory::

removeObject () method. If an intstance is acquired, onThrow() will

instantiate (build) a new copy and pass the items handle back to the

doThrow() method.

ShapeBaseData: :schedulePop(). As with the pick-up flow, if the

dynamic field respawn is set to true in the item’s datablock, the item is

meant to be transient and so should be popped from existence after throw-

ing. The ShapeBaseData: :schedulePop() method does this work. The

Gameplay Classes

User Action ShepeBaseData': Simolelnvertory:' temnData :

Success?

Use Requested _—_— a
™~

\ Use Successtul?

__—ewS = =a

doLlse() _—— —é ~
Time \

TTT T TT TT ie |

| ft IS Up to you to decide whet a use means... |
item will pop from existence in $Item: : PopTime milliseconds after being

thrown (dropped).

¢ ItemData: :onInventory(). See pickup flow above.

e ShapeBaseData: :throwObject(). As noted above, this method actu-

ally “throws” the newly instatiated item object. This method handles both
lst POV (along eye vector) throws and 3rd POV (arc along forward vector)

throws. Throw force is defined in the owner object’s dynamic field throw-

Force.

Using Inventoried Objects

Assuming we have an item in our inventory, we may at some time wish to

use it. This kind of action can be accessed through a key press (as well as a

myriad of other ways). Key presses are handled by action maps. When the

action map dictates that a use has been requested, it will use a commanaTo-

Server () call to call the shapeBaseData: :doUse() method to start the use

flow (Figure 7.12).

e Use requested. The user requests a use via mouse click or button press.

The action map is programmed to convert this client action into a server

action via the commandToServer () function (see “InventoryLesson.cs”

and “ServerCommands.cs”).

lessonMap.bindCmd(keyboard, “u”, “”,

“commandToServer (\’use\’, InventoryItem.getID() de");

¢ ShapeBaseData: :doUse(). Checks to see if the owner object has an

inventory. If so, it calls the ItemData::onUse() method.

e ItemData: :onUse(). The coding of this method is entirely dependent
upon what the use action means.

Chapter 7

Figure 7.12.

Flow after a use request.

251

Part ill

252

Game Elements

item-Specific Responses

For an inventory system to be useful, it has to be somewhat flexible. Simple-

Inventory was written to be flexible without being too complicated as a first

inventory example. The flexibility comes in several flavors.

Pickup Substitutions

Sometimes the pickup object needs to be different from the object we collide

with. For example, we might decide to have grenades in our game. We'd like

these grenades to come in packages of three grenades. We'd like the following

to be true:

e grenade packs are used for onCollision() to start a grenade pickup flow,

e individual grenades are stored in the inventory, and

e individual grenades are thrown.

SimpleInventory allows this by adding an optional dynamic field named

InventorylItem to datablocks that need to do a substitution.

datablock ItemData(Grenade) {

//

);

Gatablock ItemData(GrenadePack) {

InventoryItem = Grenade; // Store grenade, not grenade pack

//

a

With the above datablock, we can place grenade packs in the world, but when

we pick them up, we get grenades. As noted, InventoryItem is optional,

and if not specified, the datablock name is stored instead.

The observant will notice one small flaw. We haven’t specified how many

grenades a grenade pack is worth. This leads to the next topic: variable pickup

values.

Variable Pickup Values

When we pick up objects, we sometimes want the pickup to be worth one

(1) instance, and other times we want it to be worth N instances, where N is

nonzero. SimpleInventory allows this by supporting an optional dynamic field

named InventoryValue. When this field is present in an item’s datablock

and that item is picked up, InventoryValue items will be stored. By default,

one item is stored.

For example, the following code will use the trick we learned above in

combination with this new trick to store three grenades when picking up a

grenade pack.

Gameplay Classes

datablock ItemData(GrenadePack) {

InventoryiItem = Grenade;

// Store 3 grenades instead of 1 grenade pack

InventoryValue = 3;

//

i

Variations on onPickup ()

The prior two variations were useful tricks, but what do we do when we

want the pickup flow to be completely different? Answer: we write a new

onPickup () method.

Let’s say you have a coin item and a health power-up in your game.

For the coin, the default pickup is acceptable, but we would like the health

power-up to be automatically applied if the player needs it, and placed in the

inventory if not. In order to do this, a new onPickup() method will need to

be defined for the health power-up.

Gatablock ItemData (NormalHealthKit) {

healValue = 20;

hi

// New onPickup() for NormalHealthKit
function NormalHealthKit: :onPickup (%spickupDB, tpickupObj, sownerObj)

// Check if player needs healing and apply kit if necessary,

So, what about if we have multiple varieties of the health power-up? Is

there a way to program this functionality just once? The answer is an emphatic

yes. Recall that the className keyword can be used to add an additional level

to the namespace of a class. We can use this to create a generic namespace for

all health power-ups as follows.

datablock ItemData {NormalHealthKit) {

className = “HealthKit”;

healValue = 20;

\;

datablock ItemData (MegaHealthKit) {

className = “HealthKit”;

healValue 100;

};

// New onPickup() for all Health Kits

function HealthKit::onPickup (%pickupDB, spickupObj, sownerObj)

Chapter 7

else store kit.

253

Part Ill

254

Game Elements

// Check if player needs healing and apply kit if

// necessary, else store kit.

Alternate to onPickup ()

Recall that, in the flows, the onInventory() method was mentioned as a

place to put “extra” code. This is still true and is in fact often the place where

problems like the health kit above should be solved. It is up to you, but I sug-

gest deferring changes in the flows until after onPickup(), onThrow(), and

onUse(). In the end, this will keep your code cleaner and allow you to reuse

other flows.

For example, we solved the health-kit problem above by writing a new

onPickup(). Alternatively, we could have added an onInventory() that

would then call the onUse() method if the player needed to heal. We would

already need to write the onUse (), so it would be better not to rewrite similar

code for healing in an onPickup (), too.

// New onInventory() for all Health Kits

function HealthKit::onInventory(%inventoryDB , %ownerObj,

S$amount) {

// If the player needs healing, call the onUse() flow.

Non-Pickup Variations

We've discussed the pickup flow to death. What about the other two flows?

Both throw and use can be item specific, too. The key is to program variant

functionality in the namespace of the object that normally is responsible for

deciding what the action means. For throws, it is the ShapeBaseData class that

normally decides what a throw is. For uses, it is the ItemData class. There-

fore, normally variations of a throw will be programmed in the doThrow()

method, and variations on use will be programmed into onUse().

Finally, any time the inventory count for an item changes, the

onInventory() method is called, with the inventory DB (datablock), owner

ID, and amount (of change). Consider this as a possible place to do your

special coding.

Constraining Simpleinventory

As previously mentioned, SimpleInventory does not constrain object pickups.

Any item can be picked up, and any number of items can be stored. It is easy

to see that this is too simplistic for most uses, but it can quickly be improved

upon by adding any or all of the following constraints.

Gameplay Classes

e Allowed Items. Add code to predeclare the types of items that can be

stored.

¢ Disallowed Items. Add code to predeclare the types of items that cannot

be stored.

¢ Item Count Limit. Add code to limit the maximum number of a specific

item that can be carried in the inventory.

e Total Count Limit. Add code to limit the maximum number of cumulative

items (of all types) that can be carried in the inventory.

e Mass Limit. Add code to track and limit the total mass for all items in

the inventory. Please remember that all ShapeBase-derived objects have a
mass indicator in their datablock.

¢ Bulk Limit. Add a new field to the item’s datablock denoting how bulky an
item is. Then, add code to the inventory to limit total bulk.

Even with these changes, the inventory system may be too restrictive,

as it relies on datablocks to index items. This means that only objects using

datablocks can be inventoried (not a big restriction), and all data in the object

instances themselves are lost (can be a big problem). If you are programming

a role-playing game (RPG) or similar game, it will be useful to allow object

instances to be unique; e.g., this is Bob’s sword, or these boots are dam-

aged. Therefore, it will be absolutely required that objects that are stored in

the inventory be faithfully re-created at a later date, and if you want to stick

with a script-only system, you must find a way to determine the fields in an

object and then to store them. This wil] require coding an extension into the

engine.

7.7.3 General Inventory Tips and Gotchas

While coding up SimpleInventory, I ran into some issues. So, rather than let

you stumble on them, too, I’m supplying them here.

¢ Datablock names as indices and arguments. Remember that Simple-

Inventory uses datablock names both to index arrays of inventory items

and as arguments in all the functions. Also, remember that the engine
may automatically convert these names to ID numbers. This can cause a

mismatch in the inventory lookup. So, when in doubt, use the getName ()

method. For an example of how this is used, see the SimpleInventory::
verifyArgs() method.

¢ Item Behaviors. Remember that inventory items are based on the Item

class. For items to work appropriately as an inventory item, they must be

properly configured.

* Item.static. If you intend to be able to throw an object, this must be

false; otherwise, the object will stay where it was spawned.

Chapter 7

255

Part lil

256

Game Elements

* ItemData.sticky. If you want a thrown object to stop when it hits the

ground, set sticky to true.

* ItemData. friction. Setting friction to a value of about 0.7 will
cause a thrown object to arrest its motion quickly.

* ItemData.mass. If you intend to throw the object, it must have a posi-
tive mass. Using applyImpulse() on a ShapeBase object with zero

mass will crash the engine.

¢ Motivation for using ScriptObject. Perhaps this should have been explained

earlier, but as SimpleInventory uses script objects, they can be placed any-
where and in anything, including in other inventories. Also, why just have
one?

7.7.4 Inventory Validation

SimpleInventory comes with code to validate that the basic functions of

the inventory system are working properly. This code is located in “Simple-

InventoryValidation.cs” and is run every time the GPGT Lesson Kit is started.

This code may be disabled, but it is a short test and won’t affect anything

after running. To see if the system is working, search for the words “Validating

Simple Inventory System” and check for error messages.

Also, if you do decide to edit the system, you can cause it to reload the

inventory system scripts and to rerun the validation scripts by typing the fol-

lowing in the console.

sris();

7.7.5 Maze Runner Lesson #7 (90 Percent Step)—
Preparing Our Game Inventory

In this short lesson, we will examine the steps required to get our player

(MazeRunnerPlayer) to use the SimpleInventory system to pick up coins.

Loading the Inventory System

In order to use our inventory system, we must ensure that it is getting loaded.

In fact, we have already done this first step. When we set up our “Maze-

Runner” directory and copied the Maze Runner prototype directory into it,

we modified the file “\MazeRunner\prototype\main.cs”. We had it load the

inventory system’s main script file, as follows.

function onStart() // in main.cs {

// MazeRunner

exec (“. /EGSystems/SimpleInventory/egs SimpleInventory.cs”) ;

Gameplay Classes Chapter 7

// MazeRunner

exec (“./EGSystems/SimpleTaskMgr/egs_ SimpleTaskMgr.cs”) ;

//..

This then loaded the other script files that comprise this system.

// in egs_SimpleInventory.cs

exec (“./SimpleInventoryBuilder.cs”) ;

exec (“./SimpleInventoryGeneral.cs”) ;

exec (“./SimpleInventoryValidation.cs”) ;

Adding an Inventory

With the inventory system being loaded, we now have to hook it to any classes

that wish to “own” an inventory. The simplest way to do this is to have each

class add an inventory system to the object when the object’s onAdd() call-

back is executed.

Take a look in the file “\MazeRunner\prototype\server\scripts\GPGTBase\

Player\PlayerDataConsoleMethods.cs”. It contains the definitions for all of the

important callbacks used by a player class. All of these callbacks are scoped

to PlayerData::, ensuring that they will be called unless a new datablock,

deriving from PlayerData: :, redefines the callbacks.

We are already loading this script file, so we get the benefit of all of these

callbacks already. One of these callbacks is PilayerData: :onAdd(), which,

among the other things that it does, creates an inventory and saves a reference

to it in the player object.

function PlayerData::onAdd(%DB,%0bj) {

// 1

Parent: :onAdd (%DB, 30b}) ;

// 2

%0bj].enableMountVehicle = true;

// 3.

%0bj].myInventory = newSimpleInventory () ;

%Obj .myInventory.setOwner (%0b3) ;

This means that we do not have any work to do. We do not have to imple-

ment a new version of onAdd() scoped to MazeRunnerPlayer::, but if we

wanted to, we could write one like this:

257

Part lll

258

Game Elements

function MazeRunnerPlayer::onAdd(DB , %0Obj) {

// Usually called first

Parent: :onAdd(%*DB , %*Obj);

// Other statments here

}

Removing an Inventory

It is normal to destroy objects created in the onAdd() callback when the

onRemove () callback is executed.

Again, this is taken care of for us by the base code we are using from the

GPGT Lesson Kit. The following is the onRemove() callback from the same

file we just examined above.

function PlayerData: :onRemove(%DB,%Obj) {

// 1

if(isObject(%Obj.myInventory)) %0bj.myInventory.delete () ;
// 2

Parent: :onRemove (%DB, S0b}j) }

Easy as pie! Of course, we could again write a specialized version of the

onRemove () callback and just be sure to call the Parent: : version at some

point (normally last).

Function MazeRunnerPlayer::onRemove(%DB , %Obj) {

// Other statements here

Parent: :onRemove(*DB , %Obj); // Usually called last

What About Constraining?

In our game, we don’t want to constrain the inventory, but if we wanted, for

some reason, to prevent the player from picking up coins, we could simply

modify the onAdd() callback to look like the following.

function MazeRunner::onAdd(*DB , %Obj) {

Parent::onAdd(%DB , %Obj);

// No coins for you!

$obj.myInventory.setInventoryMaxCount(Coin , 0);

Gameplay Classes

In Review

I know you’re disappointed that there was no work to do in this lesson. So,

let’s just summarize the steps instead. This way you will know what they are

when you are on your own.

1. Load inventory system scripts.

2. Ensure that the onAdd() callback adds an inventory to the object when it

is created.

3. In your own onAdd(), be sure to constrain the inventory system as is

required by your game. Use the contraint methods included with the inven-

tory system.

4. Make sure that the onRemove() callback deletes the inventory.

7.8 Gameplay Classes Summary

We started this chapter by discussing the idea of gameplay. I proposed that

interaction is a major element of gameplay, setting the stage for our discus-

sion of the gameplay classes (classes implementing player interaction with

the world). We closed the introductory material by summarizing the primary

gameplay classes: Camera, Player, and Vehicle.

Our first gameplay discussion was centered on the Camera and Camera-

Data classes but cast a wide net about other concepts which we generally

labeled game view (a combination of POV, FOV, control object, free camera,

and zooming). We talked about game view for a bit, observing the fact that

other classes interacted with the camera to define the concept. We then dis-

cussed the individual game view components in detail, describing each of

them. We also discussed the side topic of render scoping and the fact that it

is controlled by the control object. Having warmed up properly, we looked

into class interactions in detail and closed our game view discussion with six

(cookbook) examples of game view control, including:

e two methods to force 1st POV (one with a limited FOV),

e forced 3rd POV,

e amethod of enabling 1st or 3rd POV,

e the correct settings to allow a camera to use its own parameters instead of
those from the object it is attached to, and

e the way a camera can be made to switch to using a vehicle's view settings

(not the player's) upon player-to-vehicle mounting.

Our next discussion included the Player and PlayerData classes. We

learned about all of the features provided by this important set of classes,

including rendering features, forces and factors (speeds, delays, resistance,

Chapter 7

259

Part Ill

260

Game Elements

etc.), pickup radius, looking angle limits (restrictions on view angles for cam-

eras attached to players), the difference between an impact and a collision,

special effects, and the standard player animations. We ended the discussion

by making a simple player for use in our game.

After Players, we discussed the various Vehicle classes, and to start the

discussion off properly, we talked about general vehicle attributes.

¢ Geometries. Chassis, tires, and collision meshes.

e Nodes. Camera, tire, and special effect nodes.

¢ Animations. Back, bot, brakelight, spring, and steering.

Once the most general discussion of vehicles was completed, we talked

about the base classes for all vehicles: Vehicle and VehicleData. We discussed

the features these classes brought to the table, including physics, steering, jet-

ting, impacts, camera features, and emitters. We ended with a general discus-

sion on mounting players to vehicles.

Done with the general vehicle discussions, we talked about the Wheeled-

Vehicle and WheeledVehicleData classes. We learned about how to program

the basic engine and braking parameters as well as about controlling the look

of the wheel rotation animation.

The WheeledVehicle class uses several datablocks, including the Wheeled-

VehicleTire and WheeledVehicleSpring datablocks. We discussed these in

order and learned about the following properties for each.

*® WheeledVehicleTire. We learned that we can implement up to eight

tires per wheeled vehicle using this class to represent the tires. Also, we

saw that it is acceptable to mix tires on a vehicle.

* Friction. We learned that the tires provide all vehicle friction as long as
the chassis is not in contact with the ground.

* Motivational forces. We discussed the fact that tires provide both longitu-

dinal (forward-and-backward) and lateral (side-to-side) forces, which act

together to move our wheeled vehicles and to maintain their heading.

* Tire radius. We examined this attribute and saw that it is important that

it should match our tire model for correct visual behavior.

® WheeledVehicleSpring. We learned that this class represents the

“shocks” for our wheeled vehicles.

* Damping forces. We learned about how damping is used to control the

expansion and contraction rates for our springs and therefore the tires.

These forces allow us to create very soft to very hard springs with vary-

ing rates of recovery.

* Anti-sway. We learned how the anti-sway force in the springs helps keep

the vehicle’s chassis level relative to the surface below the vehicle.

Gameplay Classes

* Length of travel. Here we learned how to reduce the distance a tire hub
may travel.

We closed our wheeled vehicle discussion by talking about powered wheels

and their effect on driving performance, followed by a set of examples show-

ing how to choose alternate mounting positions.

Next up, we talked about hover vehicles. We learned how to contro| our

horizontal motion and how to implement a certain amount of drag in order to

slow a travelling hover vehicle. We then discussed some factors that affect the

vehicle when it comes into contact with the ground, water, or an interior ver-

sus when it is floating free of obstructions. We discussed hovering and jetting,

as well as how to stabilize the vehicle and ensure that it remains upright. We

talked about steering and ended with a discussion of how to keep our parked

hover vehicles from floating away down a hill (the same method applied to

stopping an unmanned vehicle).

The final section in this chapter took a sharp turn and talked about a

concept instead of a particular class. That concept is the inventory (or inven-

tory system). We talked about what an inventory system is and why it is

needed. Then we compared the features provided by the inventory system

that comes with this guide (SimpleInventory) against the one implemented tn

the TGE FPS Demo. Once we were done with explanations and motivations,

we jumped into a review of the implementation and usage of SimpleInventory.

This discussion included detailed flows of pickups, throws/drops, and uses,

discussing the scripts and classes involved as well as laying out motivations

for the way the inventory behaves. To complete our discussion of inventories,

we talked about various means of modifying the standard flow and ways to

improve upon the system.

This chapter contained no shortage of difficult to understand and even

harder to remember details about interaction. Unfortunately, to successfully

create your game, you need to undestand what we have discussed, so I sug-

gest rereading this chapter and reviewing the samples that come with the

GPGT Lesson Kit. When you are well educated in these topics, you will be a

long ways toward succesfully creating a game.

Chapter 7

261

Chapter 8

Mission Objects

8.1 Mission Objects

This mega-chapter covers most of the objects that can be placed using the Mis-

sion Editor Creator. | call this a mega-chapter because it encapsulates a large

series of object descriptions as well as tips on using and/or scripting them.

If you are reading this chapter first, some of what you read here may not

make a great deal of sense due to some holes in your TGE education. Those

holes are filled in the prior chapters. So, if you do find this material confusing,

please go back and read (or at least scan) the chapters that precede this one.

Be warned: some of the objects described in this chapter are not simple. You

will need to experiment with them to fully understand their capabilities, but

this chapter should get you started down the right path. The primary goal here

is to familiarize you with these objects and some of their attributes as well as

to help you with any peculiarities. I won’t necessarily cover every attribute of

these objects in this chapter. Instead, an appendix is supplied, giving details

on each object.

Finally, it is assumed that you are familiar with the built-in tool set. If not,

go back and read Chapter 3, “Torque Tools.” When you are ready, come

back and check this chapter out.

 r

Throughout this guide and therefore in this chapter, we have exclusively

used the term “world unit” instead of meter. However, in the GarageGames

forums and on the Torque IRC channel, you may see people refer to things in

terms of meters. Because some standard measurements such as acceleration due

to gravity are set at metric standard values (9.81 world units per second squared}

it is easy to fall into the belief that the system is actually metric and that distances

are measured in meters. In fact, the engine is unitless with respect to most

measurements excluding time. However, as the engine has been given metric-

like values for all important constants, this discussion of meters versus world

units becomes a question of semantics. Because | wanted to insure that this

guide would always be accurate with reference to measurements, | have chosen

to use world units instead of meters, but you should not be confused when you

see other sources of information on Torque reference meters.
8.2 Terrain

In Torque, terrain is represented by an infinitely repeating heightmap. The

heightmap itself is usually represented by a 256 x 256 full-color (24-bit) PNG

263

Part Ill

Figure 8.1.

Terrain repeating.

 264

Game Elements

image. The engine uses this single image as a home tile, which is edge-blended

and infinitely repeated in the world plane (Figure 8.1). The default real-world

measure of the home tile is 2048 world units on edge.

8.2.1 Terrain Features

Terrain has the following features.

¢ Detail texture. A texture used to give more detail to locally visible terrain.

e Bump mapping. The terrain supports emboss-style bump mapping, using

a single source fexture.

e In-game editing. With the Terrain Editor and the Terrain Painter, you can

hand modify the shape and texturing of your terrain without leaving the

game. This is described in Chapter 3.

e Algorithmic generation. The Terraformer provides a tool-set of algorithms
for generating terrains. This is described in Chapter 3.

¢ Algorithmic painting. The Terrain Texture Editor provides a tool-set of algo-
rithms for applying textures to the terrain. This is described in Chapter 3.

e Alternate sizing. Although it is advisable, one does not need to stick to a

2048-world unit square home tile.

® No terrain. Finally, if not needed, the terrain can be removed entirely.

8.2.2 The Detail Texture

When you first start working with the terrain, it is easy to be overwhelmed

and to miss an interesting yet important feature, namely the detail texture. If

you open up the Inspector and select the terrain, you will see that there is a

field named detailTexture under the Media SimGroup. This field provides

the path to a texture that will be used to add detail to the local terrain. This

additional texture is rendered once every world unit for n world units. Addi-

tionally, it is blended with the underlying textures with a ratio that falls off to

zero at about 64 world units from the camera. Look at the screen shots in Fig-

ure 8.2 to see the difference between terrain with and without a detail texture.

I think you’ll agree that the one with a detail texture is much nicer. °

Great, right? Well, yes and no. Yes, because the terrain definitely looks

better with a detail texture. No, because you can only have one per mission,

which means all terrain in any single mission will have a fundamental same-

ness to it. For the most part, this is not a big deal, and most players won’t

even notice. However, you need to realize that your choice of detail texture

can have a big impact on the visual quality of your terrain, and you should

probably count on having different textures for different levels/missions, as

this is a subtle way of creating distinct ambiences from level to level.

Mission Objects Chapter 8

Terrain with Detail Texture Terrain without Detail Texture

Detail textures may be any size between 1 x 1 pixels and 512 x 512 pixels as

long as they follow the standard rules for textures used by Torque. See Appen-

dix D.1, “TGE Must-Know Facts,” for information on TGE’s texture rules.

8.2.3 Bump Mapping

This feature is controlled by four terrain parameters and a preference variable.

It is simplest to edit the terrain parameters using the Inspector (Figure 8.3).

* bumpTexture. Specifies a texture [[jiMedal
to use as the emboss map. Must | QatPecere
follow Torque scaling standards iiaattn

ne eee
for bitmaps, should be a mixture aes

of blacks and whites, and it should sump Te xiue gpgt/data/GPGTBasé.._

tile. You must save the mission. ees

and reload for this to take effect. eerste: #

The engine uses this texture tocre- | opr re
ate the two textures required for | | bumpScale 2 =

embossing. One is the original; the | _bumpOfiset 0.07
second is the inverted original. : : -zeroBumpSd2 sis”!

* bumpScale. Determines how ia - 7 ¥. | - |
stretched the bump-map texture

is. In other words, small numbers cause the emboss map to cover a very

small area, giving a more finely detailed bump mapping.

¢ bumpOffset. Is the diagonal offset between the two textures that make up
the emboss bump-map effect.

* zeroBumpScale. Controls the bump-mapping radius. If you consider that

bump mapping is only enabled within this radius (centered about camera),

then it will be easy to understand that smaller values will cause the bump

Figure 8.2.

Detail texture.

Figure 8.3.

Editing terrain parameters.

265

Part Ill Game Elements

mapping to cease nearer to the camera, while larger values will make it

stretch further into the visible distance.

As noted, there is one preference variable.

e pref: :Terrain: :enableEmbossBumps. Allows you to disable this fea-

ture, which could be necessary on a slow machine or an older video card.

Figure 8.4 illustrates the effects of these variables.

Figure 8.4. eblreW 20 iH

Changing terrain vam)
parameters. Ea |

vremmmipott smpo aT
supiol of sbivD

Base Texture Bumpo Bump1

266

(scaleTerrain. png) (bump0.png) (bump1.png)

Tin Gamars,

[sll],

bumpTexture ~ Bump0O

bumpScale — 3
bumpOffset - 0.015

zeroBumpScale — 2

Hall oe
—_ 7-

bumpTexture — Bump0O
bumpScale — 8

bumpOffset — 0.015

zeroBumpScale — 2

lial QF

bumpTexture — Bump1

bumpScale — 3
bumpOffset — 0.015

zeroBumpScale ~ 2

Heres

bumpTexture — Bump0

bumpScale — 3
bumpOffset — 0.04

zeroBumpScale — 2

Lise &
«

bumpTexture — Bump0

bumpScale - 3
bumpOffset — (—0.04)

zeroBumpScale — 2

ish Ci

bumpTexture — Bump1

bumpScale — 3
bumpOffset — 0.04

zeroBumpScale — 2

bumpTexture ~ Bump0
bumpScale — 16

bumpOffset — 0.05

zeroBumpScale — 6

Camera Distance — 80

bumpTexture — Bump0
bumpScale — 16

bumpOffset — 0.05
zeroBumpScale — 6

Camera Distance — 95
t

bumpTexture — Bump0

bumpScale — 16
bumpOffset — 0.05

zeroBumpScale — 6
Camera Distance — 100

|

Mission Objects

8.2.4 More about Terrain Painting

Although it might seem obvious, I’ll say explicitly that the textures used to

paint the terrain should be seamless. Why? Well, because the textures are

repeated every squaresize world units. This means that, with a default

squaresize of 8, a painting texture repeats after only 8 world units. Regard-

less, if your textures are not seamless, it will be noticeable.

8.2.5 Alternate Terrain Sizing

Interestingly, when people start playing with Torque, they soon realize that

the terrain tiles. Then, after asking around, they realize that the map is “only”

2 km x2 km. A percentage of these people have in mind making some kind

of game that would require a much larger terrain, say a massively multiplayer

online role-playing game (MMORPG). They immediately focus on the prob-

lem of making the terrain bigger. In fact, if you are reading this, I imagine that

you might be one of those people.

Now, I’m not going to say that you cannot scale the terrain, nor am I going

to say that you cannot expand the tiling feature to include multiple unique

tiles. You can do these things, but they are not trivial.

I will provide two suggestions to the alternate terrain sizing problem and

then leave the hard work to you.

Modifying squaresize

The easiest means (although not very robust) of modifying the terrain size is

to change the terrain object’s squaresize parameter. This parameter can be

edited in the Inspector and can be found in the terrain’s Misc SimGroup.

What does changing the value do? If you will recall, the terrain heightmap

is really nothing more than a two-dimensional array of values. Furthermore,

we normally represent height maps as a bitmap that (in Torque) is 256 pixels

on a side. squaresize is a multiplier that specifies how many world units

apart the pixels are in the heightmap. Sounds simple, right? In a sense, it is.

Legal values for squaresize are between 2 and 64 and are not strictly limited

to multiples of two, meaning you can have the map sizes shown in Table 8.1.

2 512 world units squared

4 1024 world units squared

8 (default) 2048 world units squared

9 2304 world units squared

64 16,000 world units squared (this is 256 million square world units!)

Table 8.1.

Map sizes.

Chapter 8

267

Part II!

268

Game Elements

This seems good at first, but once we start playing around with it, we start

to see problems. The one most people notice right away is “water holes.” At

nonstandard square sizes, water blocks will sometimes exhibit holes—that is,

a square region where there should be water, but no water is rendered. This

is very annoying. Another problem is collision. Terrain collision is affected

negatively by larger square sizes. This can be so serious that the player may

actually fall through the terrain in some places. Finally, we run into the more

subtle issues of memory usage and texture bandwidth. Varying squaresize

modifies both memory usage and texture bandwidth associated with terrain

rendering. I have personally noticed that a squaresize of 2 severely reduces

frame rate.

So, given all these bad things, should you use this method? Sure, but only

if you want to go up or down by a factor of 2. Then, this is a good partial solu-

tion. I say partial because there are ways of solving the problems noted above.

However, I’m going to leave this as an exercise for the reader.

Atlas

OK, I admit it. Changing the squaresize is not that great an idea. Sure, it

works in limited cases, but what if you want to make that really big MMORPG?

Well, I must suggest that you move up to the Torque Shader Engine (TSE).

TSE is a child of TGE that encompasses several new sets of features. The first,

and most obvious, of these is shaders, hence the name. Less well known is

the use of Atlas.

Atlas is the terrain-engine manager for TSE. It can handle any size terrain,

and I mean any size. So, if you really, really, really must make a big terrain,

go ahead and try out TSE and Atlas.

However, although I do encourage you to move up to TSE, I don’t neces-

sarily suggest that you start off making an MMORPG as a first game. Read on

to understand my reasoning.

8.2.6 Big Terrains: Don't Do It!

I want you to stop and consider this simple question: How are you going to

populate this very large world you wish to make? This might seem like a silly

question, but let me assure you that it is not.

I once read something to the effect that the people who made Tribes 2

were a bit worried about the map size being a limitation but quickly realized

that it is very difficult to actually fill four square kiloworld units of space.

In fact, most missions in Tribes 2 are much smaller than the maximum map

size.

OK, you may still be thinking something like: Yeah, but I can walk all the

way across the map in, like, no time flat! In fact, traveling at top speed, it will

Mission Objects

take you just shy of 2.5 minutes to walk from one side of the map to the other.

This would make the Torque character pretty darned fast. In fact, the default

maximum (unmodified) speed for the character is 68 kiloworld units per hour.

Normal humans sprint at somewhere near 30 kiloworld units per hour maxi-

mum, but it just feels too slow to make the character walk and run at norma!

human speeds.

This information is important for the following reasons.

1. You are going to have a heck of a time populating 4 square kiloworld units,

which is equivalent to about 400 square city blocks (there is no official
dimension for a city block, but they average between 100 to 200 world
units on end).

2. There are other solutions.

e Just use the tiled terrain. Who ts going to notice that it repeats if it takes

2.5 minutes to run across it?

e Slow the character down and tighten up spacing on objects. This is

easier to do than increasing the size of the terrain. Guaranteed!

3. This is really going to hurt and you don’t want to do it. OK, I’m not exactly

telling the truth, but I can say that it is not simple to do this.

8.2.7 No Terrain?

If you wish to have a terrainless mission, it is entirely possible. However, you

may have to edit the mission file to do this.

Trying to delete the terrain from the Inspector is a bit tricky. You have to

unlock the terrain (set dynamic field locked to false), and then you have to

delete it.

My suggestion is that you simply open your mission file in any handy text

editor, find the block named TerrainBlock, and delete the entire thing.

Oh, you might want to put something in the world for your player to stand

on, or the next time you open the mission, the player will fall forever.

8.3 Water (Blocks)

After terrain, water is another hot forum topic. Fortunately, water has gotten a

lot of attention from community members. However, this additional attention

has had the side effect of making water seem complicated to use. In reality,

most options are just that—optional. You can place and set up water in just

seconds, or if you want to go for a specific effect, you can spend hours tweak-

ing the parameters.

For the sake of brevity, | will give the quick setup instructions first, then

I’ll cover the advanced options.

Chapter 8

269

Part Ill

270

Game Elements

8. 3.1 Basic Water (Quick Setup)

OK, get your stopwatch out. Start it. Now follow these instructions:

we
O
n
a

P
W
N

P
e
e

N
h

Oo

13.

14.

15.

16.

Start the GPGT Lesson Kit.

Open the World Editor training mission.

Start the Mission Editor.

Switch to the Creator tool.

Switch to free-camera mode and move the camera up a few world units.

Look somewhere near your character.

Insert a new water block (Mission Object > Environment > Water).

Just Click OK for the dialog that comes up.

Switch to the Inspector tool.

. Click on the water block.

. Click the Expand All button.

. Change Media > SurfaceTexture to “gpgt/data/GPGTBase/water/
howwater0”.

Make sure Debugging > UseDepthMask is not checked.

Set Surface > surfaceOpacity to 1.0.

Set Surface > envMapIntensity to 0.0.

Click Apply.

Done! Depending on the speed of your machine, that should have taken about

60

8.

seconds or less.

3.2 Water Features

Water has the following features.

Discrete scaling. Because of the algorithmic nature of the water in Torque,
water blocks are scaled in fixed increments. By default, this is 32 world

units.

Discrete positioning. Again, as a byproduct of its algorithmic nature (and
due to a sometimes overlooked terrain relationship), water is positioned in
fixed increments. By default, this is 8 world units, i.e., squaresize.

Various texture-based effects.

* Basic surface texture. Plain-Jane base texture for water.

¢ Shore texture. An additional texture for shorelines.

* Over and under environmental maps. Static environmental reflections

on the surface of water from above and below.

* Specular reflections. Simulates perturbed specular reflection from water

surface.

Mission Objects

¢ Underwater fog. Torque provides a static fog for when the camera is
underwater.

¢ Underwater texturing. Under certain circumstances, up to two addi-
tional caustic textures will be rendered over the view.

e Waves. Torque supports sinusoidal waves.

¢ Viscosity and density. These two real-world characteristics affect the char-

acters and objects that encounter the water.

e Predefined water types. Torque provides several predefined types of water
that give you various ready-made effects.

¢ Flow. Torque can visually simulate flowing water.

e Distortion. If the above visual effects are not enough, you can use distor-
tion parameters to make the water yet more realistic or unrealistic if you so

choose

¢ Multiple blocks. Last, you may have multiple independent blocks of

water.

8.3.3 Advanced Water

All nght, unless you are just goofing around and learning the engine, it is

likely that you will want to make your water look a little more interesting. No

problem there. Water blocks can do some very cool things.

Position and Scale

Before we jump into the cool stuff, let’s briefly discuss basic positioning and

scaling. Unlike most objects, you cannot position or scale water blocks arbi-

trarily. Instead, the x and y components of both position and scale are adjusted

in discrete steps. Position <x, y> is adjusted in steps of 8, and Scale <x, y>

is adjusted in steps of 32. For both position and scale, the z parameter can be

adjusted continuously.

On a side note, if you have been reading this guide straight through, you

may recall that the default terrain squaresize is also B. It is no coincidence

that both position and scale are adjusted in multiples of squaresize. If you

are going to play with nonstandard terrain sizes, or if you are going to make

modifications to the way water blocks work, you’ll have to remember that ter-

rain and water are closely related. Kissing cousins, you might Say.

It is very important to note that the z parameter should not be zero. Most

people make the mistake of not adjusting this parameter. Most of the time, this

will seem OK, but if the camera will ever be under the surface of the water,

then you must have a positive value for z. More accurately, you must adjust the

Z parameter of a water block, such that the lower boundary of the water block

is below the lowest point in the terrain, for all points in the terrain covered by

Chapter 8

271

Part Ill

272

Game Elements

the block. Why? If you do not do this, you may encounter a strange bug where

the water fog disappears at certain viewing angles. This can destroy any sus-

pension of disbelief you have managed to accrue, and it is very distracting.

The Various Textures (Media]

The water block has progressed greatly since the day Torque was first released.

With this progression has come a profusion of new parameters, including a

multitude of texture parameters. Fortunately, these parameters are simple to

understand.

* surfaceTexture. This texture is used to define the base water layer(s).

This texture is rendered in two layers, with one layer reoriented at a 45-

degree angle (about z, of course). This makes the water more interesting.

e shoreTexture. We'll talk more about shorelines in a moment, but Torque

has the ability to render shorelines differently. When it renders the shoreline,

it blends this texture with surfaceTexture, giving a nice visual effect.

e envMapOverTexture. If environmental mapping (see “Reflections and

Specular Masks” below) is enabled, this texture is rendered when looking
down onto the water from above. This represents an environmental reflec-

tion on the water’s surface.

¢ envMapUnderTexture. As with envMapOverTexture, this represents an

environmental reflection, but this is the texture you will see if looking up
from beneath the water.

¢ submergeTexture0 and submergeTexturel. These two textures are

only used when liquidType is one of the lava types (Lava, HotLava,

or CrustyLava). These two textures are rendered perpendicular to the

viewing plane. Additionally, they are animated. A suggestion I was given,

which I’ll pass along, is to use two high-quality (say 512 x 512 instead of

the normal 256 x 256) grayscale caustics for these. Note: By making some
simple changes to the source code, you can colorize the resultant output to

the screen.

¢ specularMaskTex. This texture is used to make the surface of the water

look as if it is reflecting light. Again, this should be some kind of caustic
grayscale. The engine does take into account the position and elevation of

the sun when rendering the specular effect.

Makin’ Waves

The water would not be very interesting if it were just a flat plane. Fortunately,

Torque supports a wave feature. The bad part is that it is a simple sinusoidal

function. Nonetheless, it does a good job and looks good for most purposes. If

you wish to have waves, set the WaveMagnitude parameter to a nonzero value.

Bigger values equal bigger waves. Note that it is best not to attempt to place two

water blocks side by side if you are using waves. Because the algorithms for

Mission Objects

each block are calculated separately, you will get visible seams and discontinui-

ties. Also note that there is one disappointing thing about waves. If your player

is floating in water (see “Sinking and Floating” below), the waves will not lift

the player; that is, the water motion does not affect the player’s vertical posi-

tion, nor will splash effects occur from water hitting a motionless player.

Sinking and Floating

You may be wondering about how to make a character float, or perhaps you

would like to make the water more viscous, say like quicksand. Well, Torque

supports two water parameters for these effects:

e density. The default water density is 1. Meanwhile, the default character

density is 10. This means that the character will sink upon entering the

water. Therefore, if you want the character to be more buoyant, you can

adjust either or both parameters. Just remember the following rules:

water density < player density > Player sinks.

water density = = player density > Player neither sinks nor floats.

water density > player density > Player floats.

e viscosity. In addition to choosing whether a character will float or sink

in water, we can indirectly adjust how quickly this occurs by changing the

viscosity of the water. A thicker fluid like, say, honey has a high viscosity,

whereas plain water will have a low viscosity. By increasing this value, you

create an effect where the player will require more time to float or sink.

Liquid Types

The liquidType parameter was mentioned briefly above. Out of the box,

Torque supports several water types. They are legacy types from the Tribes 2

days. Unfortunately, they are not all distinct any longer. Now you have three

basic categories.

e Basic water types. All these behave similarly: Water, OceanWater,

RiverWater, and StagnantWater.

e Lava types. These cause damage when the player enters the water block,

but not while the player is submerged. It is up to you to write scripts that

apply damage while the player is submerged. The reason for this is flexibil-

ity. Instead of forcing a fixed iterative damage on users, the creators of TGE
decided to leave subsequent iterative damage up to us. When the water type

is one of the three lavas, submergeTextureO and submergeTexturel

will be rendered if you have specified them.

e Lava. Damage parameter is $DamageLava.

e HotLava. Damage parameter is $DamageHot Lava.

e CrustyLava. Damage parameter is $DamageCrustyLava.

Chapter 8

{ This also affects the

player’s ability to wal

through water. If the

viscosity ofthe

water is high and

the player is hip-high

(model’s centroid is

submerged} or further

submerged, the player

will begin to slow

f \ appreciably while

~ \walking.

oe tog

k

By default, all three
lava types apply the

same damage, but

you can change this

by specifying your

own values in the

$DamageLava,

SDamageHotLava,

and $Damage-

CrustyLava

parameters. Please

note that your own

scripts will have to

use these settings t

\ apply damage.

O
273

Part Ill

274

Game Elements

e Quicksand. This behaves just like water, except that the underwater fog
does not render. Any other behaviors are up to us and our scripts.

For most purposes, a liquidType of either Water or Lava will suffice.

Underwater Fog

So, what is underwater fog? It is the effect of water coloration and dimming

that can be attributed to the physical effect of light passing through water.

Until version 1.4, TGE employed a fixed color for water fog, which could

not be adjusted via script. If you are still working with version 1.3 or prior,

I suggest exposing the parameter that affects fog color to the console. As of

this time, that code exists at about line 900 in “game.cc”. Just look for the

following code.

glColor4f£(.2, .6, .6, .3);

Fortunately, if you are using version 1.4 of the engine, a color vector is

now exposed under the name underwaterFog and can be modified from the

Inspector and from scripts.

Water Flow

So far, we’ve talked about how to make waves, but what about horizontal

effects, like water flow? Torque supports this too. You can cause specific tex-

tures to translate over time, giving the illusion of water flow. The following

parameters are involved.

e FlowRate. If this value is nonzero, water flow will be enabled. The higher
the value, the more quickly textures will translate. The following textures
flow.

¢ nonoriented surfaceTexture.

* shoreTexture.

e FlowAngle. This parameter (in degrees) determines the direction of the

translation. The following values demonstrate the direction of flow based
on angle.

¢ 0°. Textures will translate in the negative direction along the world x-
axis.

* 90°. Textures will translate in the negative direction along the world y-
axis.

e SurfaceParallax. When FlowRate is non-zero, the flow rate of the

oriented surfaceTexture is controlled by this value as shown in Table

8.2.

Mission Objects

5 Mise E

Magnitude greater than 1 Nonoriented surfaceTexture flows more slowly than

oriented surfaceTexture.

Magnitude equals 1 Nonoriented surfaceTexture and oriented
surfaceTexture flow at same rate.

Magnitude less than 1 Oriented surfaceTexture flows more slowly than
nonoriented surfaceTexture.

Magnitude equals 0 Oriented surfaceTexture remains stationary.

Negative values Oriented surfaceTexture counterflows.
Water Distortion

In addition to supporting waves and water flow, Torque supports a distortion

feature. It is difficult to classify this effect, because by varying the distortion

parameters, you can get wildly different effects. However, the basis for these

effects is simply the stretching and squeezing of the surfaceTexture’s and

shoreTexture’s uv coordinates across a defined grid. The following param-

eters are involved.

e DistortGridScale. You don’t normally need to vary this from its default

value unless you have scaled your water. This allows you to adjust distor-

tion such that the effect is the same between a large water block and a
small water block.

e DistortMag. If this value is nonzero, distortion is enabled. Generally, the

magnitude of this value should be less than 1 or the distortion behaves
strangely. Both positive and negative values are legal.

e DistortTime. As you might guess, this is the period of the distort func-
tion. It is inversely proportional to the distortion’s rate of change. In other
words, larger values mean slower distortions and smaller values mean

faster distortions. A value of zero is illegal and will cause the texture ren-
dering to fail gracefully.

Realistic Shoreline Rendering

We’ve mentioned the shoreTexture several times now but avoided discuss-

ing how and when it is used. TGE multitextures the shoreTexture with

the surfaceTexture based on the depth at that location and the following

parameters.

e ShoreDepth. Shore rendering is determined by a ray cast at distinct points

across the surface of the water block. The result of this ray cast returns the

distance between the top of the water and the terrain directly below that

point on the surface. If this value is greater than or equal to ShoreDepth,

Table 8.2.

Flow rate of

Chapter 8

surfaceTexture.

275

Part Ill Game Elements

Figure 8.5.

Depth versus alpha curves.

276

0 < DepthGradient < 1

Fast Fade Out, Slow Fade In

DepthGradient == r
F
e
w
v
e
d

DepthGradient > 1

Slow Fade Out, Fast Fade In

the engine is instructed to render the shoreTexture. If you choose to set
this value to zero, the shoreTexture will not render at all.

e MinAlpha/MaxAlpha. As might be intuited, these two parameters

determine the minimum and maximum alpha to use while rendering
shoreTexture. This directly affects the multitexturing equation involving
the surfaceTexture and shoreTexture.

¢ DepthGradient. Controls the slope between MinAlpha and MaxAlpha. In

older versions of the engine, this was implemented as a sigmoid function,

but since version 1.2, it has been implemented using the (more involved)

gamma-correction function. This gives us the depth versus alpha curves
shown in Figure 8.5.

Reflections and Specular Masks

TGE doesn’t support real-time reflections (out of the box), but it does sup-

port the next best thing, which is a static environment map. In fact, as noted

above, it supports two maps, one for above the water and the other for below.

In addition to being able to specify these two environment maps (using

envMapOverTexture and envMapUnderTexture, respectively), you deter-

mine how they blend by adjusting the envMapIntensity parameter. Legal

values are between 0 and 1.

Mission Objects

In addition to environmental mapping, TGE supports specular masks to

simulate highlights. The specular mask is used to make the surface of the

water shiny, that is, to provide interesting looking highlights. When you use

a specular mask, the engine will render highlights, based on the texture you

provide (specularMaskTex), the position of the sun, the elevation and incli-

nation of the camera, and two additional specular parameters.

e specularPower. This determines how large an area is shiny. Lower val-

ues cause more of the specular map to be rendered; larger values will tend
to show just a spot of highlighting.

e specularColor. This can be used to change both the color of the resul-
tant highlight and its intensity. This parameter takes a 4-tuple floating-

point vector “r gb a.”

The specularMaskTex should be a grayscale caustic for a natural-looking

water highlight.

Texture Scaling

Two parameters have been provided to allow you to modify the scale of

the surfaceTexture and the shoreTexture rendering. These are named

TessSurface and TessShore, respectively. Low values result in the textures

covering large areas of water prior to repeating, whereas large values cause

the textures to repeat over shorter distances. Some caution is in order when

using these parameters. First, extremely small values can cause the textures

to become distorted. Second, extremely large values can cause texture alias-

ing even when the camera is very near the water. Just remember, if you cause

your graphics card to have to downscale the texture when the camera Is near

the water, you are wasting your altists’ time.

Tying Up Loose Ends

In addition to the water-block parameters covered thus far, there are a few

additional ones. First, there may be several under the Dynamic SimGroup. You

can remove al] of these. None of these parameters is hooked to anything in

Torque 1.2 and beyond. The remaining parameters are the following.

® rotation. Water blocks cannot be rotated.

e UseDepthMask. Caution is in order regarding this parameter. You may

crash the engine if you attempt to change this in the Inspector or from the

console. So, if you want to experiment, change the mission file directly.

Simply stated, if your value is false, only the envMapOverTexture will

be rendered on the top of the water. All other surface textures will be
disabled.

¢ surfaceOpacity. This affects how opaque the combination of surface-
Texture and shoreTexture is. A value of zero is not transparent, just

Chapter 8

277

Part Ill

Table 8.3.

Water settings for lava.

278

Game Elements

very translucent. A value of one is quite opaque. You’ll have to adjust this

to meet your needs.

removeWetEdge. Setting this value as true tells the engine to (attempt to)

clip the edges of water that protrude from beneath terrain features. Results
will vary when using this feature.

8.3.4 Maze Runner Lesson #8 (10 Percent Step)—

Lava in the Cauldron

The game will have lava at the bottom of the cauldron. Falling into this lava

kills the avatar and causes it to be respawned in its original spawn position.

For now, we’re only worried about getting the visual part done (the lava).

We'll handle the interactions later. Please do the following.

1.

. Using the Inspector, be sure that

Start up your Maze Runner prototype, run the “Maze Runner” mission, and

start the Creator tool.

. Create a water block (Mission Figure 8.6.

Objects 4 Environment Water), — Creating a water block.
only providing the name “Maze-
RunnerWater” when the creator ee tes

dialog appears (Figure 8.6).

the water has the settings shown
in Table 8.3.

OK, so it doesn’t look exactly like lava, but it gets the point across. You can

tweak this to your heart’s content after we get the game running. For now,

let’s move on.

position < -256 —256 55 >

scale < 512 512 15 >

UseDepthMask true

surfaceTexture starter.fps/data/GPGTBase/water/lava.png

shoreTexture starter.fps/data/GPGTBase/water/lava.png

specularMaskTex starter.fps/data/GPGTBase/water/lavaspecmask.png

specularColor <11102>

specularPower 12

All others Use defaults

Mission Objects

8.4 Sky
In standard Torque, the sky object renders a sky box. In addition to the six

sides of the box, you may specify up to three textures for cloud layers and

three separate fog layers.

8.4.1 Sky Features

The sky has the following features.

Configurable sky box. As noted above, the sky is represented by a sky box.

It offers such features as disabling the bottom texture and render bans.

Three cloud layers. With the standard Torque sky, you can have up to

three cloud layers, each individually configured.

General fog and three Jayers of fog. In addition to the generalized fog sup-
ported by the Sky object, you can define three additional layers of fog.

Visibility distance. The Sky object is the place you go when you want to
modify (the camera’s) maximum view distance.

Wind. The Sky object owns and controls the wind vector, which is used by

other mission objects.

Environmental map. It may seem strange, but when you are seeking the

environmental map that is used on characters and objects with environ-

mental mapping enabled, this is the place you go. It is part of the sky box’s

texture list.

8.4.2 The DML File

The DML file is the place you specify your skybox and cloud textures. The file

itself can be placed anywhere you wish below the game root directory, since

you can specify the relative path in the field materialList. A sample file
would look something like the following.

gpgt_basel

gpgt_base2

gpgt_base3

gpgt_base4

gpgt_based

gpgt_base6

env_map

layer0O

layerl

layer2

In this example, gpgt_basel .. gpgt _base4 represent the side textures,

gpgt_baseé is the top of the box, and gpgt_base5 is the bottom of the box.

Chapter 8

279

Part Hl Game Elements

The first five textures are required if useSkyTextures is true and render-

BottomTexture is false. The sixth texture is required if renderBottom-

Texture IS true.

The next texture in the DML file is env_map. This texture is used for any

environment mapping applied to shapes. This texture is optional if you are not

doing any environment mapping and do not intend to have clouds.

Finally, the last three textures in the DML file specify texture names for

the cloud layers. The ordering of these textures has nothing to do with the

cloud height. Cloud height is controlled by cloudHeightPer[3]. We’ll talk

more about this in Section 8.4.4.

Please note that I’ve stated above that this or that texture is optional

based on decisions you make. However, until you get rolling, I suggest that

you always specify six textures for the sky box and one additional texture for

the environment map. This way, you won’t run into any difficulties. Note also

that the file is positional. Therefore, for example, if you want clouds, you must

have specified the seven prior textures, even if they are dummy textures that

won't be used.

8.4.3 The Sky Box and Render Bans

“When it noRenderBans] is false, the engine will draw fog onto the sky box

[directly]. It does this so 3D objects that are fogged out (say all white} don’t stand

out against an unfogged background (the sky box). If the camera enters an area of

fog {a ‘band’) the skybox will be appropriately fogged too.”

—Ben Garney, September 15, 2005

In general, by setting noRenderBans to false, we ensure that rendering

looks good with fog. Of course, we may not always want this behavior and

can thus enable render bans by setting the field to true. To get a visual per-

spective on this, take a look at the two images in Figure 8.7. It should be noted

that the effect of this choice is especially evident from a height.

Figure 8.7.

Use of render bans.

280

noRenderBans == true noRenderBans == false

Mission Objects

Figure 8.8.

Cloud textures.

Chapter 8

One Texture: One Texture:

One Texture:

cloudHeightPer == 0.8 cloudHeightPer == 0.5 cloudHeightPer == 0.2

8.4.4 Clouds

As mentioned above, the cloud layers are specified by textures eight, nine, and

ten in the DML file. All cloud layers are optional.

cloudHeightPer

Texture eight corresponds to cloudHeightPer[1], nine to cloudHeight-

Per [2], and ten to cloudHeightPer [3]. These parameters (cloudHeight-~

Per) are used to control the central height of the cloud meshes. The cloud

meshes themselves are a nine-faced hemisphere. The cloudHeightPer

parameter specifies the height of the upper plane of this hemisphere. Figure

8.8 has some sample images to demonstrate the cloudHeight Per parameter.

A value of 0.0 will cause the cloud mesh not to render, and values above 0.8

poke through the sky box causing visible artifacts.

Multiple Layers

In terms of viewing, Layer 2 is rendered first, and Layer 0 is rendered last,

meaning that Layer O will look like it is in front of Layer 2 regardless of

cloudHeightPer.

Cloud Motion

Cloud motion is described by two parameters. All clouds move in the same

direction, specified by the (misnamed) parameter windVelocity, which is

an x-y-z vector. The x and y components control the direction of the wind and

therefore the clouds. Putting a nonzero value in z breaks the cloud renderer,

so don’t do it. You can control the velocity of the flow with the cloudSpeed

parameter. Yes, velocities can be negative, so clouds can counterflow. 281

Part Il

282

Game Elements

8.4.5 Fog

Clouds are cool, but sometimes you need fog in addition to, or instead of,

clouds. No problem. Fog is supported in Torque by a general fog, and by up

to three fog layers.

General Fog

The first type of fog affects visibility regardless of your location. The field

fogDistance is used to determine this. Low values indicate low visibil-

ity, and high values indicate high visibility. Values greater than or equal to

visibleDistance are equivalent to 100 percent visibility (unless you have

noRenderBans unchecked).

Fog Layers

As noted above, there are three layers. Layer 1 is always the lowest, and Layer

3 is always the highest. Each layer has a field EogvolumeN associated with

it. This field takes three parameters: visible distance, bottom elevation, and

top elevation.

The visible distance determines the distance from the camera at which

visibility is (near) zero. Bottom and top elevations determine where the layer

(or band) of fog begins and ends, respectively. To enable a band, visible dis-

tance must be greater than zero and top elevation must be greater than bot-

tom elevation. Also, do not forget that, if you are going to enable more than

one layer of fog, they must not overlap each other, or rendering will be messed

up. They may touch but not penetrate. Here are some sample settings.

fogVolumel = “250 0 50”;

fogVolume2 = “350 50 150”;

fogVolume3 = “25 200 500”;

e The first layer starts at 0 world units and stops at 50 world units, with a
visible distance of 250 world units.

e The second layer starts at 50 world units (touching layer one) and stops at

150 world units, with a visible distance of 350 world units.

e The third layer starts at 200 world units and stops at 500 world units, with

a visible distance of only 25 world units.

8.4.6 Visibility

We’ve seen that fog can affect our visibility, but how do we determine our

maximum view distance? This question is critical and can affect perfor-

mance as well as aesthetics; visibleDistance is the parameter we are

looking for. It measures in world units and can be set to just about any

Mission Objects

value. A word of caution, though: extremely large distances can kill perfor-

mance big time.

8.4.7 Rendering Issues

If you are having rendering problems, you may wish to check the following.

1. Get the latest drivers for your video card.

2. Set quality settings to their highest values for D3D or OpenGL, depending

on which application programming interface (API) you are using.

3. Be sure that bit depth is 32 (both in your driver settings, and under Options

> Graphics > Bit Depth from the main menu).

If you still encounter issues, talk to someone on the Torque Internet Relay

Chat (IRC) channel (IRC server: irc.maxgaming.net; IRC port: 6667; channel:

#GarageGames), or post a descriptive thread (after searching the forums, of

course).

8.4.8 Sky Scripting

Storm Fog

Storm fog is a scripting feature used to fade a layer of fog in and out over

a period of time. In order to enable this features, the sky must have been

created with the fogStorm[1,3] checkboxes checked. You must have cor-

rectly defined the visible distance and low and high values for the fog layer.

For example, if we wished to fade in and out just one layer, we could define

something like in Figure 8.9.

Notice that fogStorml] is selected.

Subsequently, we could fade layer 1 of

our fog to 50 percent over a 5 second

period, using the following code.

820000 0.826000 0.844000 1

Sky.stormFog(0.5 , 5);
100 0 20

go

OO

1 OOOO) 1.000000 1 O00000 1

1.000000 0.900000 0.000000 1

Sky.stormFogShow(0); 0.000000 0.000000 1 .OOQOUD 1

Or, we could turn it entirely off

instantly using the stormFogShow ()

method.
Note that fog layers fade in layer by layer, starting with Layer 1 and ending

with Layer 3. They fade out in the opposite order.

Please note that, if you enable fogStorm and the storm is inactive (or

deleted), your fog will disappear.

Chapter 8

Figure 8.9.

Storm-fog definitions.

283

Part J] Game Elements

Storm Clouds

Storm clouds is a scripting feature similar to storm fog, except for the three

cloud layers. Because clouds are defined differently from fog, we can’t disable

the feature for certain layers, so all layers that are defined will be affected

when using the stormClouds method. That said, if we wanted to fade our

clouds out over a 10 second period, we would write the following code.

Sky.stormClouds(0, 10);

8.4.9 Maze Runner Lesson #9 (10 Percent Step|—
Starry Night

If you are building the Maze Runner game while you read this guide, the origi-

nal sky is a bit too bright for our game, so we will need to do the following to

create a starry night instead.

1. Start up your Maze Runner prototype, run the “Maze Runner” mission, and

start the Inspector tool.

2. Find the Sky object and change the DML file to one you will find in /Maze-

Runner/prototype/data/GPGTBase/skies/starrynight/starry_sky.dml. This

file contains the following list of texture names.

stars0

starsl

stars2

stars3

stars4

stars5

stars6

cloudl

The textures used in this file are just a set of five generated starfields, a place-

holder for the seventh texture, and a randomly (noise) generated translucent

cloud texture (Figure 8.10).

Figure 8.10.

Sky textures.

284

sky0 .. sky5 (similar) sky6 (placeholder) cloudi

Mission Objects Chapter 8

Parameter tats oted Whe UE yeinae ov

materialList prototype/data/GPGTBase/skies/starrynight/starry_sky.dml

cloudHeightPer[0] 0.5

cloudHeightPer[1] 0

cloudHeightPer{2] 0

cloudSpeed1 0.0005

cloudSpeed2 0

cloudSpeed3 0

visibleDistance 1000

fogDistance 2000

fogVolumel < 550 0 300 >

fogVolume2 <000>

fogVolume3 <000>

All others Use defaults
3. Using the Inspector, be sure that the sky has the settings shown in Table

8.4. ,

8.5 Sun (Mission Lighting}

The Sun object has a simple job, namely to determine how the mission will

be lit. Initially, you may or may not find this particular mission object simple

to use, but with a little help, this should be no big deal. Please note that this

object does not have a visible representation; that is, you can’t actually see

the Sun mission object. If you need a visual representation of your sun(s), use

the fxSunlight mission object.

8.5.1 Sun Features

A sun has the following features.

* Configurable light source. Using the Sky mission object, you may config-

ure the position of the light source and coloration (both direct and ambi-
ent) of the light it emits.

¢ Qbject shading. Objects are darker on the side opposite the sun’s position.

e Shadows. Shadows are supported, but there are issues. See Section 8.5.2,

“Shadows and Sun Direction.”

e No sun and multiple suns. You can have 0, 1, 2 ... well, you get the idea.

Table 8.4.

Sky settings for starry

night.

285

Part Ill Game Elements

8.5.2 Shadows and Sun Direction

Torque supports shadows and pseudo-self-shadowing. When I say pseudo-

self-shadowing, I mean that objects are darker on the side facing away from

the sun. This is done correctly for the terrain, shapes, and interiors. Unfor-

tunately, shadows cast by objects onto other objects are a little buggy. Both

terrain and interiors properly cast shadows onto other objects, but shapes do

not. What do I mean by properly? Well, shadows should be calculated based

on the azimuth and elevation parameters. If] say a shadow is cast correctly, I

mean it adjusts based on these parameters. Table 8.5 should clarify things.

Table 8.5. | Self-Shadows?

Shadowing and self- Terrain ¢ Does adjust based on sun parameters. Yes
shadowing. ¢ Does affect other mission objects.

e Self-shadowing is baked.

(Please note that, while Interiors (.dif) ° Do adjust based on sun parameters. Yes

you are reading this ¢ Do affect other mission objects.

chapter, it is likely that e Are baked into terrain.

you are using the " ; ”
demo version of TGE. Shapes (.dts) e Adjust orientation and length based on Yes

In order to show the sun fave ission obi
engine's best face, the : ire dynam er mission objects.

demo includes some :

features from the

Torque Lighting Kit

{TLK]. While this is nice,

it may Cause some con-

fusion if a feature that

! describe here does

not match the demo.

So, instead of trying to
document both TGE

and TLK here, | will be

describing the stan-

. dard version of the ,

Torque Software

Development Kit

(SDK). This way,
you will know exactly
what you are getting

when you buy the SDK

while also knowing

(from the demo] what

TLK can do for you.

286

Baked shadows are calculated once during the lighting phase of a mission

load and are static until/unless the mission is relit.

Better Lighting

Although lighting in the base version of TGE is good, it cannot compare to

the extended ranges and other features provided by the Torque Lighting Kit.

Neither can it compare to the almost unlimited set of effects you can get by

using the Torque Shader Engine. So, if you’re looking for more intense or

. dazzling lighting effects, remember that you have options that keep you in

\\ the Torque family and thus retain all of the other great features Torque

provides.

Azimuth and Elevation

Once you grasp the concept of azimuth and elevation, they are quite easy

to work with, but describing them directly is a bit of a chore. I’m sure there

is a succinct mathematical way of describing these terms, but not being a

mathematician, and wanting to be clear to those similarly handicapped, | will

instead describe them simplistically.

Mission Objects

Imagine, if you will, that we have a magic arrow (yes, a vector). The

base of this arrow is stuck to the world axis. Magically, the head of the arrow

always points at the sun. Given this, our magic arrow will behave as shown in

Table 8.6.

Chapter 8

Azimuth (degrees) | Elevation (degrees) | = The Arrow

0 0 Points down the y-axis and lies in the

x-y plane.

45 0 Makes a 45-degree angle between x
and y and lies in the x-y plane.

90 45 Points down the x-axis, making a 45-

degree angle between x and z.

In all cases above, x, y, and z are the world axes.

Both azimuth and elevation can theoretically take any value between 0

and 360, but in practice, there are certain values that do not work well.

Azimuth

e Legal range: [0, 360).

e At 90 and 180 degrees, shadows stop rendering.

Elevation

e Legal range: [0, 360).

e Suggested range: [0, 90).

e Engine will crash if this is set to 90 degrees.

e Values greater than 180 are below the terrain and may produce odd effects.

8.5.3 Color and Ambient Parameters

OK, enough about where the sun is, but what about the color and ambient

parameters? First, both of these parameters affect the scene lighting in dif-

ferent ways. Briefly, color is the part of the light that is cast directly onto

shapes, interiors, and the terrain. It accounts for the shadows that interiors

and terrain features cast. The ambient parameter is the portion of the light

that is scattered by the environment and appears to come from all directions.

Both parameters account for the total lighting of the terrain, the character,

and interiors. Changes to the ambient portion of lighting are most easily

noticed, but you should experiment with both factors (ambient and color)

to achieve the results you need.

Both parameters take four arguments, <rgbi>, where / is the intensity.

Currently, intensity has no effect for either parameter.

Table 8.6.

Azimuth and elevation

following the sun.

287

Part Ill Game Elements

8.5.4 Multiple Suns?

You may have more than one sun, but be aware that the following is true.

e Mission lighting will take significantly longer.

¢ Lighting is cumulative and clamped, meaning you can saturate your

lighting.

e Shadows do not behave as you would expect with two or more light sources;

instead, you'll likely end up mauling your shadows.

The number one reason for adding multiple light sources is to get cool shad-

owing effects. Since this doesn’t really work as expected, you are probably

better off just sticking with one sun.

8.5.5 No Sun?

This has been an on-again, off-again feature. Currently, you must specify a sun

or your game will crash (TLK handles this case without crashing). However, if

you want a totally dark mission, you can achieve this with a sun present. Just

set the two color parameters (color and ambient) to “0 0 0 0”. In the end,

this is safer than removing the sun, even if it does work for you now.

8.5.6 Maze Runner Lesson #10 (10 Percent Step)]—

Low Lighting

If you are building the Maze Runner game while you read this guide, the origi-

nal sun (lighting) is a bit too bright for our game, so we will need to do the

following to match our night sky.

1. Using the Inspector, lower the lighting values for the Sun object to the val-

ues in Table 8.7.

2. Now, relight the scene (ALT +L) to see the values take effect.

Table 8.7.

« Lighting values for low

lighting.

288

Fields ae Values

elevation 90

azimuth 90

color <0.50.30.31>

ambient <0.20.20.21>

8.6 Precipitation and Lightning

A couple of nice effects to be able to add at will are precipitation (i.e., rain,

snow, hail, etc.) and lightning. These are actually separate mission objects

Mission Objects

(one for precipitation, and two possibilities for lightning), but I’ll address

them together because they are relatively small and have at least a tangential

relationship.

8.6.1 Precipitation Features

Precipitation has the following features.

Variable density. You can choose between a light shower and a downpour.
Additionally, the density of rainfall varies randomly over time to give it a
more organic feel.

Variable velocity. Since real raindrops do not all fall at the same rate,
Torque supports the ability to randomly vary the velocity of individual

drops.

Drop coloration. For an additional degree of realism, you can modify the
coloration of individual drops by providing up to three colors.

Multiple textures. Because having just one texture for the drop would be

boring, Torque supports 16.

8.6.2 Lightning Features

There are two different objects that can be used for lightning. First, there is the

Lightning object, which supplies the following features.

Generated lightning. Based on LightningData fields you set, the engine
generates jagged lightning bolts.

Targetable strikes. You can, to some degree, target where lightning begins
and where it will strike.

Fade color. You can choose what fade color is used for the bolts. The fade
color is used to simulate the effect of seeing a lightning strike.

Fogging. You can enable fogging features to make the lightning extra
impressive, but this feature requires hardware support.

Thunder. You can supply a sound datablock to provide thunder with the
lightning.

Second, there is a recent addition, WeatherLightning, which supplies the fol-

lowing features.

Textured lightning. Based on WeatherLightningData fields you set, the
engine renders your supplied lightning textures.

SkyFlash and fuzzing effects. Based on WeatherLightningData fields you

set, the engine renders flashes in the sky and an afterimage for each bolt.

e Thunder. You can supply a sound datablock to provide thunder with the
lightning.

Chapter 8

289

Part {il

' If you want to learn all about

billboards, pick up a good

book like Akenine-MOller
and Haines, Real-Time

Rendering, Second Edition

(A K Peters, Ltd., 2002).

290

Game Elements

8.6.3 Let There Be Rain

Setting up a precipitation object requires that we consider several facets of the

rain storm’s behavior, including the density of the storm, the speed at which

individual drops fall, drop coloration, and the images that should be used for

our raindrops. As you will see, all of this is quite straightforward.

Precipitation Density

Precipitation density is a measure of how many raindrops we have in a cer-

tain area. We can vary the precipitation density by varying maxRadius,

maxNumDrop, and percentage. Together, maxNumDrops * percentage

determines the current number of drops falling. We can spread these drops

out by selecting various values for maxRadius. A low value of, say, 30 will

cause drops to fall within 30 world units of the camera, and a value of 125 will

cause them to fall as far away as 125 world units.

Precipitation Velocity

In order for our precipitation to look more realistic, we’ll want it to fall at vary-

ing rates. To do this, simply set minVelocity to a nonzero value lower than

maxVelocity. Now, drops will fall at some random speed between minVelocity

and maxVelocity. Additionally, setting offsetSpeed to a nonzero value

adds a bit of horizontal velocity to the drops. Don’t overdo it on this parameter,

though, as high values can make the precipitation look a bit unnatural.

Varying Drop Colors

The base color of your drops is determined by the texture(s) you use for

your precipitation (see below), but you can modify this with the color (3:1]

parameters. As far as I can tell, 33 percent of the drops are either colori,

color2, or color3. So, setting the <r g b> portion of these to something

other than <111> will cause the textures to be shaded that color. Note that

the alpha channel (fourth value) does nothing.

Precipitation Media

By default, any individual drop is a billboard.! For the sake of this discussion,

think of a billboard as a polygon that automatically orients itself to be facing a

specific direction. These billboards are textured using 1/16th of a texture sup-

plied in the PrecipitationData field dropTexture. That is, you supply the rela-

tive path to a PNG file in PrecipitationData.dropTexture. This texture

should be a 4 x 4 grid containing a raindrop image in each of the sixteen result-

ing grid blocks (see Figure 8.11). When the engine gets ready to produce a new

drop, it will randomly select one of the 16 subtextures and use it as the precipi-

Mission Objects

tation billboard. You may use JPG or PNG files for precipitation, but I suggest

using PNG, as JPG does not support the transparency that you will likely need.

8.6.4 It Was a Dark and Stormy Night...

What would a storm be without a little lightning and thunder? Well, fortu-

nately you don’t need to find out, because Torque comes with two different

classes that each display different styles of lightning and play thunder sounds,

too. We will discuss both in this section, starting with a discussion of Light-

ning and then segue into a discussion about WeatherLightning.

Lightning (and WeatherLightning) objects are blocks like water. This

means that you can place multiple blocks of lightning throughout your mis-

sion, or if you choose, you can have just one big block covering the whole

mission. Blocks may overlap. You can freely scale the lightning block using

the Inspector and the mouse.

8.6.5 Lightning Strikes!

First, it is important to understand what a strike is. When the engine gets

ready to draw the lightning, it decides whether it is going to strike the ground,

the highest local object, or if there will be a miss.

When there is a miss, the lightning is drawn at an angle, sometimes even

parallel to the ground. These misses give the lightning a more realistic look.

So, how does the engine determine if there will be a miss or a strike, and when

there is a strike, how is it determined if an object or the ground will be hit?

First, the zone where anything can be hit is determined by the location

of the lightning box as well as the strikeRadius. Bolts will strike objects

or the ground within strikeRadius of the lightning object. To determine if

an object will be hit, or if the ground will be struck, the engine grabs a list

of all damageable objects in the strike zone and does a sort, looking for the

highest object. It can randomly choose an object that is not the highest, but

it prefers the highest object (as does real lightning). Finally, the engine rolls

the dice, so to speak, and if the value it gets back is less than or equal to

chanceToHit (remember those good old AD&D days?), that object is hit. If

the value is higher than chanceToHit, then the bolt hits a random location

on the ground.

We can control the number of lightning strikes (this includes misses) per

minute with the parameter strikesPerMin. This is not the inverse of the

strike period but instead a rough number of strikes per minute. Increasing

this value increases the number of strikes in any period, but strikes can hap-

pen very rapidly or with short pauses between them. This just gives it a more

random feel. You can’t predict a lightning strike.

Chapter 8

Figure 8.11.

Precipitation texture (a

4x 4 grid of subtextures}.

ried
titi
f+? Py
a a a

291

Part Ill

292

Game Elements

So, what about strikeWidth? Well, this determines the width of the bolt

on a strike. Bolts all have a default width for misses, but for strikes, you can

control the width. Do you want a fat strike or a narrow one?

Lightning Color

The textures you choose for your lightning are used as a mask, but the color-

ation comes from the color and fadeColor parameters. The bolts are drawn

first, using color, and then over a short period, they are faded out. While

this fade occurs, the bolts are colored fadeColor. This gives a nice heated

plasma effect and mimics the behavior of the eye when it sees a lightning bolt.

When you see an actual lightning strike or any focused bright light, most of

the receptors in the eyeball fire for the area where the bolt is focused by your

eye’s lens. This temporarily uses up all the available chemicals that make

sight possible. In other words, those receptors are temporarily turned off by

the overload. The effect is a phantom bolt that fades over a short time.

Leaning Lightning?

In addition to controlling the strike zone, we can control where the lightning

bolts start. If we set boltRadius to zero, then all bolts will radiate from the

topmost center position of the lightning box. We can also set the value to

something big, like 500. Now, all the bolts will seem to be coming from far

away and angling towards the strike zone (assuming a small strike zone).

Ooh... Pretty Lightning!

Finally, if you set useFog to true and if the user’s graphics card supports

both multitexturing and fog-coordinate extensions (a pretty good bet for cards

two or fewer years old), the engine will do a nice bit of texturing with local

fog (i.e., fog around the camera).

Two Ways to Create Lightning

The engine supplies two means of making lightning. The first type is gener-

ated (Lightning object) and uses no textures. The second way uses textures

instead of generation (WeatherLightning object) for more spectacular effects.

Generated Lightning (Lightning Objects)

In order to create generated lightning, we must still create a datablock for our

lightning.

datablock LightningData (LightningExample) {

// Play this sound when lightning strikes!

strikeSound = LightningStrikeSound;

Mission Objects

// Up to eight thunder sounds can be defined

thunderSounds[0] = ThunderSound0O;

thunderSounds[1] = ThunderSoundl1;

};

This datablock specifies zero textures, a strike sound, and two of the eight

possible thunder sounds. .

Now, we can place a lightning object in our mission using this datablock

or create one via script.

new Lightning() {

position = “O 0 180;

scale = “100 100 500”;

dataBlock = “LightningExample” ;

strikesPerMinute = “90”;

strikeWidth = “0.25”;

chanceToHitTarget = “100”;

strikeRadius = “25”;

boltStartRadius = “100”;

color = “1.000000 1.000000 1.000000 1.000000”;

fadeColor = “0.100000 0.100000 1.000000 1.000000”;

he

This sample will produce a lightning storm centered at an <x y> of “0 0”

and starting at an elevation of 180 world units. Up to 90 bolts will strike per

minute, all of which will be fairly narrow and striking within a radius of 25

world units of “O 0”, but starting at a radius of 100 world units; that is, these

lightning bolts will lean in. Finally, the bolts will start off completely white

and fade to a dark blue.

Textured Lightning {WeatherLightning Objects}

Alternatively, we could use the WeatherLightning object and specify a

WeatherLightning datablock as follows.

datablock WeatherLightningData(TexturedLightningExample) {

strikeTextures [0] “,/data/lightninglframel”;

strikeTextures[1] = “./data/lightninglFrame2”;

strikeTextures[2] = “./data/lightninglFrame3”;

flashTextures[0] = “./data/flash”;

u fuzzyTextures[0] = “./data/lightningFuzzframel”;

fuzzyTextures[1] = “./data/lightningFuzzFrame2”;

fuzzyTextures[2] = “./data/lightningFuzzFrame3”;

Chapter 8

293

Part Ill

294

Game Elements

strikeSound = LightningStrikeSound;

thunderSounds[0] = ThunderSound0;

thunderSounds[(1] = ThunderSoundl1;

hi

This datablock uses three textures for lightning bolts, one texture for a bolt-

origin flash (in the sky), and three textures for after-bolt fade images. In each

case, we could have specified up to eight textures for the three effects. In addi-

tion to these visual effects, like Lightning, WeatherLightning can play a strike

sound and up to eight thunder sounds (although we only specified two).

At this point, you might be a little confused about what you get with

Lightning objects and what you get with WeatherLightning objects, so let’s

summarize their features.

Lightning Features Revisited

In summary, the Lightning object is used to create generated lightning effects.

It gives us various controls over how that lightning is generated, including the

width of the bolt, the starting location of the bolt, the ending location of the

bolt, its initial color and ending color, and finally the number of bolts per min-

ute. In addition to these Lightning field controlled features, the LightningData

datablock has the fields and features shown in Table 8.8.

WeatherLightning Features Revisited

In summary, the WeatherLightning object is used to create textured lightning

effects. It gives us fewer controls over the bolts than the Lighting object. In

fact, we can only control the number of bolts per minute, using the strikes-

PerMin field. However, this object does have the benefit of producing very

nice bolt effects. These effects are specified using the WeatherLightningData

datablock and supplies the features shown in Table 8.9.

8.6.6 Maze Runner Lesson #11 (10 Percent Step)—
Stormy Weather

If you are building the Maze Runner game while you read this guide, we are

now going to add some rain, lightning, and thunder to our scene. The game is

meant to have a “cartoon spooky” theme, and these elements will add to that.

Adding the Rain

1. Start up your Maze Runner prototype, run the “Maze Runner” mission, and

start the Creator tool.

strikeSound

Mission Objects

An audio profile to use for the strike noise. Should be 3D audio
profile created with datablock keyword.

thunderSounds [8]

Eight audio profile slots for thunder/lightning strike sounds.

Should be 2D audio profile created with datablock keyword.

strikeTextures[8] Eight texture slots for relative paths and names of lightning
texture files.

flashTextures [8] Eight texture slots for relative paths and names of lightning
origin-flash texture files.

fuzzyTextures [8] Eight texture slots for relative paths and names of lightning

fade textures.

strikeSound An audio profile to use for the strike noise. Should be 3D audio

profile created with datablock keyword.

thunderSounds [8] Eight audio profile slots for thunder/lightning strike sounds.

Should be 2D audio profile created with datablock keyword.

minSpeed 1

maxSpeed 1.5

rotateWithCameraVel true

numDrops 2000

boxWidth 200

boxHeight 100

doCollision 0

All others Use defaults

Figure 8.12.

Adding rain.

Figure 8.13.

Adding lightning.

Building Object: Precipitation

Building Object: Lightning

MazeRunnerLightning

Chapter 8

Table 8.8.

Fields in Lightning

datablocks.

Table 8.9.

Fields in WeatherLightning

datablocks.

Table 8.10.

Settings for rain.

295

Part Ill

Table 8.11.

Settings for lightning.

296

Game Elements

position < 00 300 >

scale < 256 256 250 >

strikesPerMinute 6

strikeWidth 15

strikeRadius 128

color < 0.89 0.8 0.42 1 >

fadeColor <0.50.90.9 1 >

chanceToHitTarget 0

boltStartRadius 32

All others Use defaults

2. Select a precipitation object (Mission Objects > Environment > Precipita-

tion), giving it the object name “MazeRunnerRain” and choosing the data-
block BaseRain (Figure 8.12).

3. Open the Inspector and give the new rain object the settings in Table 8.10.

Adding the Lightning and Thunder

1. Go back into the Creator tool.

2. Select a lightning object (Mission Objects > Environment > Lightning),
giving it the object name “MazeRunnerLightning” and choosing the data-
block BaseLightning (Figure 8.13).

3. Open the Inspector and give the new lightning object the settings in Table
8.11.

8.7 Audio Emitters

So far, we’ve focused on visible environmental objects. What about sounds?

Audio emitters are objects that you can use for placing positional sounds.

Audio emitters have the ability to turn themselves on and off based on a trig-

ger. This trigger can be modified in size and shape to meet your needs. Let’s

take a look, or perhaps I should say, let’s have a listen?

8.7.1 Audio Emitter Features

Audio emitters have the following features.

e 2D sound. This is sound with no apparent source. In other words, it is

neither directional nor positional.

Mission Objects

* 3D sound. This is sound with a specific source. Furthermore, this type of

sound is modulated by distance from and facing angle to the sound source.

¢ Looping and nonlooping sounds. Emitters can be programmed to loop a

variable number of times or as one-time emitters.

¢ Triggers. 3D sound emitters have the ability to turn themselves on and off
based on a cut-off distance.

8.7.2 2D Sound

2D sound is very simple. All 2D sound emitters are turned on at the earliest

opportunity (shortly after they are created). If looping is enabled, audio emit-

ters will not stop playing until all loops have been exhausted; otherwise, they

will play once and then stop.

You can specify a 2D audio emitter with the following settings.

e Media

* description. Set this to the relative directory + filename for the sound

file. Either WAV or OGG files are acceptable formats.

* type. A value between 1 and 8, corresponding to the audio group this
emitter should belong to (see “2D Gain” below).

e Sound

* volume. Between 0.0 (0 percent gain) and 1.0 (100 percent gain).

* outsideAmbient. Should be checked.

e Looping. Set looping parameters based on your requirements (see "Loop-

ing" below).

e Advanced

* is3D. Should be unchecked.

2D Gain

Gain determines how loudly your sound will play. The gain equation for 2D

emitters is as follows.

2D gain == game master volume * audio group gain * emitter gain

Game master volume is controlled from the main menu under Options >

Audio. Audio group gain is controlled by the field Media > type.

e Valid values for type are 1..31. By default, only 1..8 are set up.

¢ 0. Is reserved.

¢ 1. GUI audio type (Options > Audio > Shell Volume)

¢ 2. Sim audio type (Options > Audio > Sim Volume)

¢ 3..8. Set to 0.8 (search for channelVolume in scripts).

Chapter 8

297

Part Hl

Table 8.12.

Use of loop gaps.

298

Game Elements

e The purpose of this gain is to allow you to adjust the gain for a group of

emitters in one step.

Emitter gain is controlled by the field Sound > volume parameter.

Looping

If you haven’t already guessed, the looping parameters allow you make an

emitter (2D or 3D) play the sound file between one and infinite times. To

enable looping, make sure Looping > isLooping is checked. Then, set your

loop count. Loop counts work as follows.

¢ loopCount == -1. Loop infinitely.

¢ loopCount == 0. Loop once and only once.

e loopCount == 1. Loop once, possibly twice.

e loopCount == (n > 1). Loop n times.

On rare occasions, a value of 1 will cause two loops. So, if you really want

only one loop, use a loopCount setting of 0.

Loop Gaps

The loop gap parameters control the delay between subsequent loops.

minLoopGap, as you would imagine, defines the lower boundary for delays

and maxLoopGap the upper. Torque randomly chooses a value between these

two. Loop gaps are approximately equal to 2m milliseconds, where n is the

LoopGap value selected. Please note that loop gaps can be used to do some

interesting things (see Table 8.12).

0 Sound turns on, but won’t turn off (2D and 3D)

1 Sound turns on immediately and turns off at end of
loop or upon exiting 3D region (see below).

1 0 Sound does not turn on, ever.

N>1 N>1 Normal behavior.

By using the settings minLoopGap = 1 and maxLoopGap = 0, you can

tell the emitter to not play at load time. Once the load is completed, you can

have a script set the gap values to whatever delay you need, or you can hook

the sound up to a trigger.

2D Visual Feedback

Visual feedback in 2D mode is simple. While editing, you can see the emitter

as a small cube. The cube will be black while not playing and green while

playing (Figure 8.14).

Mission Objects Chapter 8

 Audio emitter off Audio emitter on (playing)

8.7.3 3D Sound

In real life, sound radiates from a source to a listener. Additionally, sound is

attenuated by several factors, including distance, angle, occlusion, etc. Torque

simulates the behavior of real-world sound with OpenAL's 3D sound features.

3D audio emitters support distance and angular attenuation. How they sup-

port these features can be a little confusing, so we will treat this topic like a

puzzle and examine each puzzle piece individually to see how it fits into the

complete picture.

Sound Zones and Sound Cones

In practice, audio emitters support four reference

ce

zones of sound (Table 8.13 and Figure

8.15).

maximum
distance

Zone A—Inner Cone

As noted above, gain in the inner cone

a function of distance from the emitter

(source). To determine the physical volume

of the inner cone, we must specify the fol-

lowing. cone cone vector

A Listener in inner cone. Gain is a function of linear distance from source.

Listener in outer cone. Gain is a function of linear distance from source
and angular distance from inner cone edge.

Cc Listener in area outside Gain is a constant value determined by outside
outer cone. volume.

D Listener beyond maximum Emitter is deactivated.

distance from source.

Figure 8.14.

Audio visual feedback.

Figure 8.15.

Sound cones.

Table 8.13.

Four zones of sound.

299

Part Ill

300

Game Elements

e is3D must be checked to enable 3D sound.

© position specifies the tip of the cone and the base of the coneVector.

e rotation specifies the direction in which coneVector points.

e maxDistance specifies the base of the cone. coneVector is a unit vector,

but you can image a line passing through the vector, starting at position

and ending at position + coneVector * maxDistance, and this is the

position of the cone base.

e coneInsideAngle specifies the inner cone sweep.

To specify the gain of the inner cone, we must specify the following.

e volume. Emitter gain.

e referenceDistance. This specifies the distance (from the emitter) at

which 3D gain == 0.5.

Inner cone gain works as shown in Table 8.14.

Zone B—Outer Cone

Gain in the outer cone is a function of inner-cone gain and the angle from the

outer edge of the inner cone. To determine the physical volume of the outer

cone, we must specify the following.

e inner cone.

e coneOutsideAngle, which specifies the outer cone sweep.

The outer cone shares all the parameters of the inner cone including the axis. To

specify the gain of the inner cone, we must specify one additional parameter.

* coneOutsideVolume, which is the gain at and beyond the outer edge of
the outer cone. Important! If this value is 0, the outer cone will be disabled

and there will be no sound except inside the inner cone.

Outer-cone gain works as shown in Table 8.15.

Zone C—Outside Volume

If coneOutsideVolume is nonzero, the area outside of the outer cone has a

gain between coneOutsideVolume and zero, based on the distance from the

emitter. Outer-volume (zone) gain works as shown in Table 8.15.

Zone D—Beyond maxDistance

The maximumDistance can be used to draw an imaginary sphere around the

emitter. If the camera enters that sphere, the emitter is told to load its sound.

Additionally, if the camera is inside an enabled sound zone, the emitter is told

to play the sound. Conversely, if the camera moves from within the sphere to

outside the sphere, the sound is told to stop playing.

Mission Objects

P<R 0.5 * P/R where

P == 0.5 P = | listener position — emitter position |

+ R = referenceDistance

M>P>R ~ R/P _M=maxDistance

Ca == Ila Ig where

Ca<la<0Oa Ig > Ov Ig = inner cone gain at current distance from

(as a function of emitter .
angle) Ca = (coneOutsideAngle — Current Angle) / 2

Ia = conelnsideAngle / 2

Ca == Oa Ov Oa = coneOutsideAngle / 2

Ov = coneOutsideVolume
 coneOutsideVolume > 0

(as a function of distance)

where P = | listener position — emitter position |

3D Visual Feedback

Before we jump into examples, let’s discuss the visual feedback associated

with 3D audio emitters. Because there are more audio concepts to express,

the visual feedback is a little more complex than for 2D emitters, but only

marginally (Figure 8.16 and Table 8.17). You can specify a 3D audio emitter

as follows:

Media

¢ description. Relative directory

+ filename for the sound file.

Only WAV format is supported.

Mono and stereo formats OK.

* type. 1 through 8 (see “2D

Gain” above).

Sound

* volume. Between 0.0 (0% gain)

and 1.0 (100% gain).

* outsideAmbient. Should be

checked.

outer cone (270 deg)
[pink/purple }

| inner cone (00 deg) outside volume
{ dark red gradient] (remainder)

{ blue]

“a Pd LP
wt e

» sft
Oy

reference distence
(pure red]

Looping. Set looping parameters based on your requirements (see “Loop-

ing” above).

Chapter 8

Table 8.14.

Inner cone gain.

Table 8.15.

Outer cone gain.

Table 8.16.

Outer volume gain.

Figure 8.16.

Visual feedback for 3D

audio.

301

Part ilk Game Elements

Table 8.17, Inner cone Red fading ta black. Fade starts at referenceDistance.

Audio emitter—3D visual Outer cone Pinkish-purale,

feedback. Outside valume Blue.

302

On/Off indicator Same as 2D (not visible (n Figure 8.16),
e Advanced

* enableVisualFeedback. Should be checked. Please note thal, even

if this is not checked, visual feedback renders when a 3D emitter is

selected.

* is3D. Should be checked.

* coneInsideAngle. Set to your preference.

* coneOutsideAngile. Set to your preference. 0 to disadle.

* coneOutsideVolume. Set ta your preference. 0 to disable all out (nner

cone,

* coneVector. Don’t touch this. It is set autamatically when you adjust
Totation. Typed changes will be overridden,

Audio Descriptions and Profiles

Audio descriptions and profiles are an alternate way of (pre-) specifying (he

specifics of an audio emitter. These will be discussed in Chapter lL, “Special

Effects.” For now, it is perfectly suitable to define the parameters for an audio

emitter using the Inspector.

8.7.4 3D Emitter Examples

Figure 8.17 gives examples of 3D audio emitters.

8.8 Particle Emitter Nodes

One of the more time-consuming mission objects ta place is the particle emit-

ter—not because it is particularly hard to understand, but because it offers a

venerable carnucapia of features. Moreover, it is just plain fun to play with!

In fact, if you don’t approach it knowing the basics af haw to use it and

with a good idea of the result you want, you could ourn several haurs gaot-

ing around, While J can’t help you focus an a particular idea, IT can help you

understand the basics of using it.

J must warn you before we start: we are going to depart from using the

mission editor alone. In order to duild emitters, we need to write same script

datablacks. For now, you can just use my examples directly, and you should nat

get into too much trouble. Later, you may experiment and write your own.

Mission Objects Chapter 8

Figure 8.17.

3D audio emitters.

A

coneInnerAngle: 90

coneOuterAngle: 0

coneOutsideVolume: 0

B

coneInnerAngle: 360

coneOuterAngle: 0

coneOutsideVolume: 0

c

coneInnerAngle: 270

coneOuterAngle: 360

coneOutsideVvolume: > 0

coneInnerAngle: 180

coneOuterAngle: 360

coneOutsideVolume: > 0

8.8.1 What Is a Particle Emitter Node?

Particle emitter nodes (PENs) are static objects (that is, they don’t normally

move) that can be used to provide special effects such as smoke, fire, water-

falls, fireflies... you name it. They do this by emitting—you guessed it—par- _

ticles. As is commonly? the case in 3D systems, these particles are billboards. * Some common particles are

In the case of particles, these billboards are usually textured with a partially _Dillboards, pixels, and lines.

opaque and partially translucent texture and are usually facing the camera.

What this means is that, when you look at any particular particle, it will nor-

mally be facing you, and you will likely be able to see through parts of it.

So, what do we have so far? In Torque, particles are billboards, and they

are shot out of PENs. However, particles don’t just shoot out of PENs. In fact, 303

Part il

* Done right, particles do not
consume a lot of resources

(memory, CPU time,

geometry budget, etc.).

304

Game Elements

we (the game designers) chaose how many particles there are, what kinds of

visual effects they have, how fast they smoot, whether they are affected by

wind, gravity, etc. All these factors make PENs useful. Most impartant of all,

we can create some awesome effects at a low cost.’

8.8.2 Particle Emitter Data Blocks

As I mentioned above, we need to build a few databdlocks before we can play

with particle emitters. Specifically, we will need a minimum of three data-

blocks.

« ParticleEmitterNodeData (PEND). Think of this as the base for the emit-

ter. It controls one aspect of the particle emitter—time.

« ParticleEmitterData (PED). This is used to describe the behavior of the

PEN itself. It controls how many particles are emitted, now fast, and in
what position/direction.

¢ ParticleData (PD). This describes individual particles. [t cantrals colar-

ation, fade, spin, drag, velocity, acceleration, and whether gravity, particle

life, and a few other things affect a particle.

The GPGT Lesson Kit (and the prototype content an the accompanying disk)

comes with several predefined particle datablacks, including the fallowing.

® baseSmokePDO. A ParticleData datablock used to represent smoke.

* baseSmokePD1. A ParticleData datablock used to represent smoke. Uses
same parameters aS baseSmoke PDA with new texture.

e basaFirePDO. A ParticleData datablock used to represent simple fire.

* baseFirePDl. A ParticleData datablock used to represent a nicely ani-

mated fire.

e baseSparkPDO. A ParticleData datablock used to represent sparks.

@ baseRubblePDod. A ParticleData datablock used to represent bubbles.

® baseDuatPDO. A ParticleData datablock used ta represent dust.

@ basePED. A ParticleEmitterData datablack using baseSmokePOd.

® hasePEND. A (default) ParticleEmitterNodeData databsock.

If we wanted to use some of the above datablocks in script, we could do the

following:

new ParticleEmitterNode (PEN Testd) (

position = “0 0 0”;

rotation = “1 00 0”;

scale = “1 1 1”;

dataBlock = “basePEND”;

emitter = “basePED”;

Mission Objects

velocity = “1”;

Me

8.8.3 ParticleEmitterNodeData (PEND}

Datablock Parameters .

The PEND datablock specifies a time multiplier for an individual PEN (Table

8.18). This time is used subsequently in certain calculations, which we'll

cover in Section 8.8.7.

8.8.4 ParticleEmitterData (PED] Datablock
Parameters

The PED datablock specifies the behavior of a PEN, including what particles

it emits, at what rate, in what direction, with how much velocity, and for how

long (Table 8.19). It also describes how particles will be oriented.

8.8.5 ParticleData (PD) Datablock Parameters

The PD datablock describes an individual particle, including how things

like wind, drag, gravity, and an acceleration factor affect it (Table 8.20). It

also describes physical parameters of the particle including color, size, spin,

and lifetime. Lastly, it describes advanced features, like alpha inversion and

animation.

8.8.6 PEN Parameters

In order to specify a PEN in your mission, you can add it with the World Edi-

tor (WE) (Fll> F4; Mission Objects > environment > particleEmitter), or

by hand-editing your mission file. In order to do this, we need to specify the

parameters in Table 8.21.

8.8.7 PEN Equations

As promised, I’ll describe some important equations below. Armed with these

and the subsequent descriptions of theta and phi, orientation, and anima-

tion, you should be able to prespecify approximate values before you start to

experiment and tune, which should save lots of time.

Supine ae he

ea
s ate Ae fe

timeMultiple | [0.01 , 100.0] | Time multiplier, used to increase or decrease
elapsed time by a ratio. Affects ejection period,

ejection position calculation.

Table 8.18.

PEND datablock
parameters.

Chapter 8

305

Part Ill

Game Elements

Table 8.19.

PED datablock parameters.

- TIO! §

eS Saree E PRIN Re TAS

ejectionPeriodMsS | [1, inf) 100 Milliseconds between last and next particle ejection.

periodVarianceMS | (0, ejectionPeriodMs] 0 Amount to vary ejection period by.

ejectionVelocity | [0, inf) 2.0 Initial velocity imparted to particles.

velocityVariance | [0,ejectionVelocity] 1.0 Amount to vary initial velocity by.

ejectionOffset [0, inf] 0.0 Particle ejections begin at ejectionOffset distance

from emitter.

thetaMax [0, 180] 90.0 Modifies emitter ejection up and down. This modifies

[thetaMin, 180] the PEN up vector.

0 = fully up, 180 = fully down

thetaMin [0,180] 0.0 Modifies emitter ejection up and down. This modifies

[0, thetaMax] the PEN up vector.

0 = fully up, 180 = fully down

phiReferencevel [0, 360] 0.0 Causes emission point to rotate clockwise

phiReferenceVel degrees per second about the
PEN UP vector.

phiVariance [0, 360 J 360.0 Separate from phiReferencevVal, this parameters

enables a random ejection between 0 degrees and

phiVariance.

overrideAdvance false Always false (legacy code).

orientParticles | [true, false] false | If true, face emission direction.

If false, face camera.

orientOnVelocity | [true, false] true If true and if orientParticles == true, face

direction of motion.

If false, use orientParticles setting.

particles PD name(s) List of PD datablocks to use/emit.

lifetimeMS [0, inf) 0 Length of time to eject particles before stopping (in

milliseconds).

lifetimeMS == 0: Always on

lifetimeMS > 0: lifetimems milliseconds

lifetimeVariance | [0, lifetimeMs) 0 Amount to vary 1ifetimeMs by.

useEmitterSizes false Not used for PENs. These apply to particle emitters

, attached to a particle emitter object.
useEmitterColors | false

306

Mission Objects Chapter 8

Table 8.20.

PD datablock parameters.

, ¥ rhe: a :

a z i ee é

dragCoefficient (0.0, 1.0) 0.0 Factor determining velocity subtracted per second.

windCoefficient [0.0, 1.0] 1.0 Percentage of wind vector added to particle vector.

gravityCoefficient (-inf , inf) 0.0 Gravitational acceleration for particle.

Negative values cause particles to rise.
— 4

| inheritedvelFactor [0.0, inf) 0.0 Multiplier determining how much of the PED |

ejectionVelocity is added to the initial velocity

of the particle.

constantAcceleration (-inf , inf) 0.0 Incremental velocity added to particle velocity on a

per-second basis.

lifetimems (100, inf) 1000.0 Particle life in milliseconds. At the end of its life, the

particle is deleted.

lifetimeVarianceMsS (100, lifetimes) 0.0 Amount to vary lifetimeMs by.

spinSpeed (~10000 , 10000) 0.0 Speed at which particle rotates about its facing

vector.

Only valid when PED orientParticles ==

false.

spinRandomMin (-10000 , 10000) 0.0 Minimum random value added to spinSpeed. |

spinRandomMax (-10000 , 10000) 0.0 Maximum random value added to spinSpeed.

useInvAlpha true or false false Inverts interpretation of texture alpha.

animateTexture true or false false | Sequence between additional textures, specified in
animTexName [50].

framesPerSec (1,200) 1 Frame frequency for animated textures.

textureName “Path + File Name” “es Texture path and filename (PNG only).

Must be <= 255 characters long.

animTexName [50] “Path + File Name” we Additional texture path and filenames (PNG only). |

Used when animateTexture == true.

animTexName[0] Same as textureName. |

colors [4] “rg bi’ “1.01.0 Color interpolation values.

1.01.0" — Please note that only these values determine particle
color. The texture is used as an alpha map, not for
coloration.

sizes [4] { 0, inf) 1 Size interpolation values.

times [4] [0,1] 0.0, 1.0, | Key frames. These affect interpolation rates over life

of particle. 1.0, 1.0

307

Part Ill

Table 8.21.

PEN parameters.

308

Game Elements

Transform position | Used to set location of PEN.

rotation Values have no effect.

scale Values have no effect.

Misc nameTag Not used by engine.

dataBlock PEND datablock name.

emitter (Particle data in WE) | PED datablock name.

velocity Initial ejection velocity for this emitter.

Some of the datablocks below produce vectors. Those vectors are calcu-

lated from a series of vectors and scalars (from the datablocks and internally

from the engine). In order to be clear, [will italicize vectors and bold scalars.

Velocities are in world units per second, and unless otherwise specified, input

vectors are unit vectors.

Particle Initial Velocity

Each particle is given an initial velocity vector at ejection time. The velocity

vector is determined as follows:

emitAxis * PEN.velocity * ejectionAxis * (

PED.ejectionVelocity + PED.velocityVariance * 2.0 *

rand[0.0,1.0] - PED.velocityVariance).

emitAxis is always <0, 0, 1> (in practice you can ignore this factor).

ejectionAxis depends on orientation, theta, and phi. rand[0.0,1.0] pro-

duces a random value between 0 and 1.0.

Particle Post-Ejection Velocity Changes

After being ejected, a particle may or may not have its velocity modified.

NextVelocity == CurrentVelocity *

((PD.constantAcceleration * InitialVelocity) -

(CurrentVelocity * PD.dragCoefficient) -

(WindVelocity * PD.windCoefficient) +

(<0.0, -9.81> * PD.gravityCoefficient))

Please note that there is a time delta component not shown.

Mission Objects

Particle Lifetime

Particle lifetimes are a simple concept. If a particle (s created at time n, at

time mn + lifetime, the particle will be deleted. Lifetimes affect interpolation,

which will describe next. The PD. lifetimeVariancems allows us to ran-

domly vary individual lifetimes, which makes things seem less artificial when

viewed, Lifetimes are in milliseconds.

PD.lifetimeMS + (rand{-1,1] * PD.lifetimeVarianceMs)

8.8.8 Particle Interpolations

Particles are subject to two types of interpolation: calor and size. Calor inter-

polation is the ability to modify the particle color aver its lifetime. Similarly,

size interpolation js the ability to modify the particle size over its lifetime.

Interpolation is controlled by key frames (PD.times(4]}, af which

Torque allows up to four. The minimum value for a key frame js 0.0, and the

maximum value is 1.0. Key frames should be used in order, and unused key

frames should be set to 1.0.

This is probably all stil) sounding rather mysterious, so (Il give some

examples and explain what they do.

PD.cclor[0} = “1.01.01.0 1.0%;

PD.color/[1] = “1.01.01.0 0.0";

PD.color(2- ‘4.01.0 1.0 0.0%;

PD.color(3] = “1.0 1.01.0 0.0”;

PD.size[(O] = 1.0;

PO.size[t] = 1.0;

PD.size(2)] = 1.0;

PD.size(3) = 1.0;

PD.time(0) = 0.0;

PD.cime(1) = 1.0;

PD.time(2} = 1.0; // Unused

PD.time(3] = 1.0; // Unused

The above example tells the particle to remain at size 1.0 far its entire lifetime

and to fade smoothly from bnght white to transparent,

PD.color(0) = “1.0 0.2 0.2 1.0%;

PD.color({1) = “0.2 1.0 0.2 1.0”;

PD.color[2] = “0.0 0.2 1.0 1.0%;

PD.color(3) = “0.0 0.2 1.0 1.0%;

Chapter 4

309

Parr IM

310

Game Elements

PDO.size[0) = 0.5;

PD.size[1) = 1.0;

PD.size[2] = 1.5;

PD.size[3) = 2.0;

PD.time[0) = 0.0;

// 1/3 time here framed by time{O] and time([1)

PD.time[l) = 0.33;

// 1/3 time here framed by time(l] and time(2)

PD.time[2] = 0.66;

// 1/3 time here framed by time(2) and time([3?}

PD.time[3) = 1.0;

The above example causes the particle to smoathly increase fram a size

of 0.5 to 2.0 over the particle‘s lifetime. Additianally, the particle's colar is

interpolated from a shade of red, to green, then ta olue, where it stays for the

last one-third of its lifetime.

Interpolation takes some practice getting used (0, out it's a nice couch that

gives us some cool variations on particles.

8.8.9 PEN Lifetimes

Just as particles have lifetimes, so can particle emitter nodes. A PEN can be

told to emit particles forever or far a fixed duration.

// Emit forever after being created

PED. lifetimeMS = 0;

// Emit for five seconds plus or minus 1.5 seconds

// after being created

PED. lifetimeMS = 5000;

PED.lifetimeVarianceMS = 1500;

8.8.10 PEN Particle Ejection Frequency

The PEND and PED datablocks give us three parameters in total to adjust the

rate at which particles are emitted.

¢ PEND. timeMultiple. This changes the simulation time versus real time
ratio. All events occur in simulation time. With the addition of thts param-
eter, the particle emitter will view time as passing at the rate of PENO.
timeMultiple * rea) time. This feature allows us to use the same PED in

two (or more) different emitters and vary the rate of emission. It also gives

us a nice way to tune the overall rate of our effects.

Mission Objects

¢ PED. periodMs. This is the base time between particle ejections.

® PED. periodvarianceMs. This is the amount to vary the dase time
between ejections.

Given these three parameters, the particle emitter will eject particles at ran-

dom intervals, where the time between ejections is (1/PEND. timeMultiple)

* (PED.periodMS-PED.periodVarianceMS) and (PEND. timeMultiple}

* (PED. periodMS + PED. periodVarianceMs). To clarify this, let's look at

some examples.

// Emit a new particle every 200 milliseconds with no variation

PEND.timeMultiple = 1.0;

PED. periodMS = 200;

PED. péeriodVarianceMS = 0.0;

In the above example, the particle emitter will see time passing at the narmal

rate, sO that one second of real time is equal to one second of simulation

time.

// Emit a new particle every 400 milliseconds with no variation

PEND.timeMultiple = 0.5;

PED.perloaMs = 200;

PED. periodVarianceMS = 0.0;

In the above example, the particle emitter will see time passing at half the

normal rate, so that two seconds of rea) time are equal to one second of simu-

Jation time.

// Emit a new particle every 100 milliseconds +/- 25 ms

PEND. timeMultiple = 2.0;

PED. periodMS = 200;

PED. periodVarianceMS = $0;

In the above example, the particle emitter wil} see time passing at twice the

normal rate, so that one second of real time is equal to two seconds of simula-

tion time.

8.8.11 Theta and Phi Explained

ParticleEmitterData has four felds: thetaMin, thetaMax, phiReference-

vel, and phiVariance. Together, they control the directian jn which our

emitter ejects particles. Although they have scary-sounding names, these

fields are really quite easy to use. To show this, let's start with the theta fields,

and then we'll discus the phi fields.

Chapter 8

311

Part M

Figure 8.18,

Theta efectian vectors.

0 deg
45 dag

90 deg

135 dag

180 deg

z

Ly

Figure 8.19.

Phi €JECUON VECtOrS.

G0 dag

312

180 dag

0 deg

y

Game Elements

thetaMin and thetaMax

Theta controls the up and down of the emitter's ejection vectar. Imagine, if

you will, that you are standing (o the side of an emitter. If we play with the

theta parameters, we can make the emitter eject particles anywhere Straight

up and straight down (Figure 8.18).

Torque supplies the two oparameters PED. thetaMin and PED. thetaMax.

These act as boundaries. We point the emitter in a specific directian such as

90 degrees (straight out) by setting PED thetaMin to 90 and PED. thetaMax

to 90. Alternatively, if we wish ¢o spread our particles out, we can set PED.

thetaMin to 0 and PED. thetaMax to 90. Now, particles will be randomly

ejected with an ejection vector pointing Oetween straight up and straight out.

phiReferenceVel and phiVariance

Since theta was so simple, you might jump to the canclas(on that phi controls

the Jeft and right. If you did, you would be both right and wrong. The phi

parameters do control the ejectian vector's left to right pointing, but not like

the theta parameters. Whereas PED. ChetaMin and PED. thetaMax were used

to set the minimum and maximum up-down ejection angles, our minimum

phi angle is always zero degrees and PED. phiVariance controls the

upper angle. This means we cannot point our phi (n the same way we

can theta. (See Figure 8.19.)

270 deg So, what abDout PEO. phiReferenceVel? This strange param-

eler causes the emitter (o spin clockwise about its up vector.

PED. phiReferencevVel is measured in degrees per secand.

OK, fet’s surmmarize what the theta and phi parameters do for

us, PED. thetaMin and PED. thectaMax allow us to control the up-

down painting of our ejectian vector. Furthermore, we can specify a

Ly range of up-down positions between which the ejection vector will

randomly vary. Next, PEOQ.phiVariance allows us to change the

tight-left pointing of our ejection vectar, but we can only adjust the nght

direction of the ejection vector. Left is always stuck at 0 degrees. Finally, PEO.

phiReferenceVel can be used to cause the emitter to spin clackwise abaut

its UP vector at phiReferenceVel degrees per second.

8.8.12 Orientation Explained

We’ ve covered orienting the ejection vector, but what about the particle itself?

First, remember that the particle is actually a billboard. Initially, J said that

these billboards would normally face the camera. The PED onentation param-

eters give us the ability ta choose between various billboard orientations.

Table 8.22 summarizes particle orientation options.

Mission Objects Chapter 8

PED. orientParticles

PED. orientOnVelocity | Resulting Orientation

false don’t care Screen oriented.

Particle always faces screen
(camera).

|

true false Face ejection. _

Face along ejection vector.

true true Face motion.

 Face along trajectory.

8.8.13 Animated Textures

Among the other coo! features supported by Torque’s-particle emitter is the

ability to animate a particle via multiple textures. In Torque, you can specify

up to 50 separate textures.* Then, while the particle is being displayed, Torque

will cycle through these images.

It’s really quite simple to do this. Take a look at the following example.

PD.

PD.

animTexName [0]

animTexName[1]

PD.

PD.

animTexName [49]

framesPerSec = 1;

“~/path_to_texture/texture0”;

“~/path to_texture/texturel”;

“~/path_to_texture/texture49”;

// Play one frame per second

In the above example, we’ve specified 50 distinct textures for use in our sequence.

Then, we specified that they must be played one (frame) per second. When the

sequence gets to the end, it will begin to repeat. It’s really that simple.

8.8.14 Multiple Particles?

You might recall that we could specify more than one particle for the

PED.particles parameter. If you specify multiple particles for an emitter’s

PED, the emitter will eject the particles in order and then repeat. The follow-

ing reasonable questions arise.

1. How do I specify more than one PD?

2. How many can | specify?

Here are three examples of the syntax for specifying three particles for a PED.

particles =

// OR

particles =

// OR

particles =

PD_NameO TAB PD Namel TAB PD _Name2;

PD NameO SPC PD Namel SPC PD _Name2;

“PD_NameOQ PD _Namel PD_Name2”;

Table 8.22.

Particle orientation

options.

‘ If you’re willing to edit the ,
engine, you can set this

value to anything you want

(within reason).

313

Part Iii

314

Game Elements

Basically, PED.particles needs to be a whitespace-separated string of PD

names. You may specify as many particles as you need.

8.8.15 Holy Popping Particles!

An interesting problem | initially had while playing with particles was a dis-

turbing popping effect when the particles’ PD. LifetimeMs limit was hit. Tats

can have several sources, but if you study the effect, i¢ should be apparent

that the cause is simply the fact that a very visible object is suddenly popping

out of existence.

To make this transition subtler, just use the particle interpolation param-

eters. Here are some suggestions:

® Be sure your interpolations are-smootn; j.e., don’t use values like 0.1, 0.5,

0.6, 1.0 unless you are looking for a shuddering effect.

e Fade particles by lowering the fourth PD. colors parameter (which repre:

sents intensity or alpha) over the lifetime of the particle.

e Shrink particles in the latter part of their life.

8.8.16 Can! Mount Emitters?

A common question in the farums Is, “Can] attach an emitter to my XYZ?”

Unfortunately, you may not attach a particle emitter to an arbitrary shape or

node in a shape. Many shapes provide specialized nodes for particular emitter

effects, but TGE does not support arbitrary mounting of particle emitters.

8.8.17 Can! Move Emitters?

Another question J often see is, “Can I move an emitter after [place it?” Often,

the answer I see given to this questions is, “No.” However, this is mot true.

There is a way to move particle emitters. If you want to move a particle emit-

- ter after it is placed in the world, do the following.

). Store the ID of the emitter yau want to move in a global variable or in
another appropriate location.

2. In scmpt, modify the position field af the particle emitter nade. Yes,

modify the position field.

3. Last, to move the PEN, simply rescale the PEN, using its current scale.

SmyPEN = // ... create che PEN and store its ID

SmyPEN.position = “10 10 10”;

// We want to move to < 10 10 10 >

SmyPEN.setScale(S$myPEN.getScale());

Sure, it’s a bit of a hack, but it gets the job done.

Mission Objects

8.8.18 Maze Runner Lesson #12 (90 Percent
Step)—Teleport Station Effect

If you are building the Maze Runner game while you read this guide, we are

now going to create the datablocks for a set of particle emitters that will be

used later to mark the position of our teleport stations.

We will need three distinct versions of this emitter. So, our strategy will

be to create a base ParticleData datablock and a base ParticleEmitterData

datablock using the previous ParticleData datablock. Then, we will use the

inheritance feature of TorqueScript to create two copies of each datablock

with minor modifications. This will give us a total of six datablocks. For the

ParticleEmitterNodeData datablock, we’ll just use the basePEND datablock

that comes with this guide.

Copy Required Files

From the accompanying disk, please copy the file “\MazeRunner\Lesson_012\

teleporters.cs” into the directory “\MazeRunner\prototype\server\scripts\

MazeRunner”.

Now, edit the function onServerCreated() in the file “\MazeRunner\

prototype\server\game.cs” to look like the following (bold lines are new or

modified).

exec (“./MazeRunner/mazerunnerplayer.cs”); // MazeRunner

exec (“./MazeRunner/teleporters.cs”); // MazeRunner

ParticleData (TeleportStation_PDO)

We want our particles to be nebulous particles of medium size with a red,

green, or blue coloration.

datablock ParticleData(TeleportStation_PDO) {

dragCoefficient = 0.0;
‘gravityCoefficient = -0.50;

inheritedVelFactor = 0.0;

constantAcceleration = 0.0;

lifetimeMS = 400;

lifetimeVarianceMS = 100;

useInvAlpha = false;

textureName = “~/data/GPGTBase/particletextures/smoke”;

colors[0] = “0.7 0.1 0.1 0.8%;

colors[1] “0.7 0.1 0.1 0.4%;

colors[2] = “0.7 0.1 0.1 0.0%;

sizes[0] = 0.1;

sizes[1] = 0.3;

(—

SS elements.
—

Chapter 8

You may have noticed

that the Teleport-

Station_PDO datablock

definition only supplied

array elements 0, 1,

and 2 for of each of

the colors|], sizes[],

and times] arrays.

You may wonder

why | did not specify

array index three for

each of these arrays.

The reason for this is

simple. Interpolation

occurs between times

0.0 and 1.0, and since

times[2] is defined as

1.0, the interpolation

will automatically

stop when it gets to

colors[2], sizes[2], and

times[2]. This is not

to say that we could

make times[3] less

than 1.0 and add more

entries, but rather

that we don't need to

use all of the array
315

Part Ul

Figure 8.20.

Smoke particle

 316

Game Elements

sizes

times

2

0

times[l

2

[2] 0

[O] = 0.

[1] 0
times [2] 1

\i

As can be seen,

e this particle will float upward since it has a negative gravity coefficient;

e it has a short lifetime between 300 and 500 milliseconds;

e the particle it uses is nebulous (see negative image in Figure 8.20);

e it fades from medium red to dark red evenly; and

¢ it starts off small and triples in size over time.

ParticleEmitterData (TeleportStation_PEDO)

datablock ParticleEmitterData(TeleportStation PEDO) {

ejyectionPeriodMS = 1;

periodVarianceMS = 0;

ejectionVelocity = 2.0;

ejectionOffset = 0.5;

velocityVariance = 0.5;

thetaMin = 0;

thetaMax = 80;

phiReferenceVel = 0;

phiVariance = 360;

overrideAdvance = false;

particles = “TeleportStation_PDO”;

i

As can be seen,

e this particle emitter ejects a new particle every millisecond, meaning we'll

have up to 500 particles alive at any time (per emitter);

e it ejects particles at 1.5 to 2.5 world units per second starting at the center

to 0.5 world units out;

e the ejection vector will be anywhere about the center and starts from

slightly upward to straight up; and

e of course, it uses the particle we just made.

Duplicate Datablocks

The last step before trying these emitters out is to duplicate them so. we have

three sets. As you can see when looking at the code, we have taken advantage

of TGE’s datablock inheritance:

Mission Objects Chapter 8

datablock ParticleData(TeleportStation PD1 : TeleportStation_PDO) {

colors[0] = “0.1 0.7 0.1 0.8”;

colors[1] = “0.1 0.7 0.1 0.4”;

colors[2] = “0.1 0.7 0.1 0.0%;

\;

datablock ParticleBmitterData(TeleportStation PED1 : TeleportStation_PEDO) {

particles = “TeleportStation PDI”;

}3

datablock ParticleData(TeleportStation_PD2 : TeleportStation_PDO) {

colors[0] = “0.1 0.1 0.7 0.8”;

colors[1l] = “0.1 0.1 0.7 0.4”;

colors[2] = “0.1 0.1 0.7 0.0%;

}i

datablock ParticleEmitterData(TeleportStation_PED2 : TeleportStation_PEDO) {

particles = “TeleportStation_PD2”;

)e

We only needed to change the particle colors and to use the correct particle

in our new emitters.

Testing the Emitters

We’re not ready to use these emitters in our game, but we should test them.

Do the following. ,

1. Start up your Maze Runner prototype.

2. Load the “Maze Runner” mission.

3. Use the Creator to place a particle emitter (Mission Objects > Environment

> ParticleEmitter).

4. Give the emitter (node) any name you like.

5. Use the basePEND ParticleEmitterNodeData datablock.

6. Select one of the three ParticleEmitterData datablocks we just examined

(Figure 8.21).

 Figure 8.21.

Testing the emitters.
Building Object: PanticleEmi@tterNode

MazeRunnerTeleportStation |

ParticleEmitter Dialog Settings Resultant Emitters 317

Part Ul

318

Game Elements

8.9 fxShapeReplicator & fxFoliageReplicator

These two replicators are dirds af a feather and are bath created by Melvin

May. Their purposes are multifold:

e allowing multiple objects to be placed autamatically and randomly within

specified bounds,

e allowing this to be dane in sucn a way as ta make the scene laok mare

organic (i.é., not artificial), and

e reducing the network transmission cast of multiple related objects ta that

of a single object plus a few additional parameters.

Melvin May has managed to do this quite successfully, very much ¢o the

appreciation of Torque users. Furthermore, his fx objects are, for the mas¢

part, easy to understand and use.

Before we get into the usage of these two replicators, l’ll give a succinct lis¢

of all parameters for both the fxShapeReplicatar and the fxFoliageReplicator.

To save space and due ta the common nature of these replicators, I'll cambine

their parameters into one list, indicating when a parameter exists in the shape

replicator but not the follage replicator, or vice versa.

8.9.1 Replicator Features
The replicators have the following features:

e Directed random placement. Using a tcicky inner- and outer-ellipse affar-
dance, you can direct Torque to replicate a specific number of objects ta

random locations within a clearly defined area.

« Multiple toggleable placement restrictions. Because random placement
wouldn't be any good if you couldn't specify rules far where to place and
nat to place, the replicator mission abjects bath have a slew of toggleable
tests for placing objects.

e Dimension and orientation controls. (n order to make a scene more
organic, you can provide metrics that will allow objects to be randomly
sized and oriented within set bounds.

e Advanced culling. The foliage replicator provides the ability to tune the
culling algorithm. The culling algorithm is responsible foc chaasing when
to render objects and directly affects frame rate. The ability to fine tune this

is a real plus.

« Animation and lighting. Foliage can be both animated and lit (or self-lit).
You have direct control over how this is done.

8.9.2 Placing Replicators

Replicators are placed much like any other item in the world. You just drag

them and drop them where you wish them ta be. The location of the replicatar

Mission Objects

Position — zs eo Whe Ee see ea

Inside area defined by InnerRadiusxX and InnerRadiusy?

Inside area defined by OuterRadiusxX and OuterRadiusy, and
outside area defined by InnerRadiusX and InnerRadiusyY?

 Outside area defined by OuterRadiusxX and OuterRadiusyY? | No

can be the center of a placement target. The size and shape of this. target are

controlled by the inner and outer radius parameters. These parameters can be

used to create two ellipsoidal areas. If we ignore restrictions for a moment,

placement mules simply become those shown in Table 8.23.

8.9.3 Replicator Visual Feedback

Melvin May has supplied a nice visual feedback mechanism for seeing where

the shapes will and will not be placed.

Examining the image in Figure 8.22, we can see two ellipses that were

created with the following settings.

* InnerRadiusX == 5, OuterRadiusx == 25

® InnerRadiusY == 15, OuterRadiusy == 20

If you look closely, you will see that objects are randomly placed in the area

outside inner ellipse and inside outer ellipse.

8.9.4 Seeds

A very important aspect of replicators is that they will produce the same result

each time they are used as long as they are given the same Seed. The Seed

is used as an input to a random number generator. This generator is used to

produce and place al) objects associated with the replicator.

8.9.5 Replicant Count

You may select how many objects you wish to replicate using either the

ShapeCount or the FoliageCount parameter, depending upon which rep-

licator you are using. It is important to understand that this is a theoretical

maximum, not the guaranteed number of objects you will get.

8.9.6 Placement Restrictions (Restraints)

Besides the ellipses and the position, what else controls placement? There

is a nice set of “knobs” with which we can tune placement rules. These are

called restrictions or restraints in the foliage and shape replicators, respec-

tively. Their names are pretty self-explanatory, but just in case, I’ll explicitly

spell out their use in Table 8.24 and show an example in Figure 8.23.

Chapter 8

Table 8.23.

Replicator placement rules.

Figure 8.22.

Visual feedback of

replicator.

319

Part Ill

Table 8.24.

Restrictions and restraints.

Figure 8.23.

Stacked shapes

fAllowOnStatics ==

true}.

320

Game Elements

 Peo a

n if

aes CRN

AllowOnTerrain If this is set to true, objects can be placed on terrai

present.

AllowOnInteriors If this is set to true, objects can be placed on interiors

(buildings, etc) if present.

AllowOnStatics If this is set to true, objects can be placed on other

shapes if present. This means that if you are using the

fxShapeReplicator, it is possible to have objects get stacked

on top of each other by a replicator. See Figure 8.23.

AllowedTerrainSlope | When objects are placed on terrain, they will not be placed

on areas with a slope greater than or equal to this value.

false - - Objects cannot be

placed in areas with

water.

true true - Objects can be placed

on surface of water.

true false true Objects can be placed

on terrain below water.

In addition to the restraints listed in Table 8.24, fxShape-

Replicators offer three additional parameters. AlignToTerrain

causes shapes that are placed on terrain to align to the terrain’s up

vector. Furthermore, you can adjust how this alignment occurs by

adjusting the parameter TerrainAlignment, which is a 3-value

vector. Lastly, you can enable or disable shape collision boxes by

setting Interactions to true or false, respectively.

Interactions Must Be True for Collisions

We just covered this, but I must restate it nonetheless. If you have the

Interactions field set to false, collisions for fxShapes are turned off. A

lot of new users have this problem and complain about it vociferously in

the forums. I’m here to save you the embarrassment of being told, “Set the

Interactions field to true. Duh.” Hey, nobody is perfect.

8.9.7 Retries

Well, with all these rules determining whether an object can be placed, you must

wonder what the replicator does if it finds it can’t place an object. Well, just like

you or me, it tries again. You can control the number of attempts the replicator

Mission Objects

will make per object with the FoliageRetries or ShapeRetries parameter.

Why not just try until an object can be successfully placed, you ask? Consider

the case in which there is no legal place left to put an object. In this case, without

a retry limit, the replicator would attempt to place objects forever.

8.9.8 Foliage Dimensions

We've finished talking about the common attributes between the {xFoliage-

Replicator and the fxShapeReplicator. Now let’s jump into some of the addi-

tional features offered by the f{xFoliageReplicator. Because we’re going to be

using the same image over and over to simulate some kind of foliage fea-

ture, we'd like an inexpensive way to make these images seem different. The

dimension parameters give us this. For example, let’s say we choose the fol-

lowing settings.

FixSizeToMax == false MinWidth == 0.5 MaxWidth == 1.5

FixAspectRatio == false MinHeight == 0.5 MaxHeight = 2.0

RandomFlip == true

What we would get are billboards that are randomly between 0.5 and 1.5

times their default width and 0.5 and 2.0 times their default height. Addition-

ally, the image may be randomly flipped around its vertical axis (i.e., flipped

horizontally). This flipping will be useful if we have a nonsymmetric image.

So, what about that aspect ratio business? Well, if you are familiar with tex-

ture mapping, you will understand that without maintaining the proper aspect

ratio, images may look stretched. The FixAspectRatio parameter forces the

randomly selected height/width to be a fixed multiple of the original. Some

example images in Figure 8.24 show what |’m talking about.

Figure 8.24.

Maintaining the aspect ratio.

Chapter 8

128x128 PNG Same PNG 2X Height
FixAspectRatio == false

Same PNG 2X Height
FixAspectRatio == true 321

Part |!

322

Game Elements

Lastly, let’s discuss Of fsetZ. This is helpful to fix little issues you run

into where the texture may be slightly embedded or slightly abave a surface.

If this happens, just increase or decrease Of fsetz2 slightly until the problem

is fixed.

8.9.9 Shape Dimensions and Rotation

fxShapeReplicators allow you to adjust the dimension and rotation of shapes

with the parameters in the Object Transforms group. You can allow random

scaling by setting ShapeScaleMin and ShapeScaleMax accordingly. Addi-

tionally, you can allow for random rotation by setting ShapeRotationMin

and ShapeRotationMax to nonzero values. Values are chosen between the

minimum and the maximum on a per-axis dasis. Finally, OffsetZ is offered

under the group for fxShapeReplicators and has the same purpase as noted

above.

8.9.10 Foliage Culling

Of all the attributes in the fxFollageReplicator, the culling parameters were the

least intuitive to me. So, before we jump into them, perhaps a quick descnp-

tion of view culling is in order.

View Culling

If you think about it for a moment, it will be apparent that it would be highly

inefficient to render aJ) objects in a mission, when only a small fraction of

them are in a position to be visible. [n reality, the objects in front of the

camera aye the only objects that we really need to render. This set of adjects

is called the potentially visible set (PVS). There are many ways to ouild a

PVS. In the case of fxFoliageReplicators, when the useCulling parameter is

false, each bulboard js individually tested for visibility. In the case of a smal)

set af biJboards, this is probably the mast efficient way to cull. Hawever, once

you have a Jarge number of abjects, this methad quickly begins to consume

too much CPU time.

Quadculling

At this point, you should consider Cuming on culling by setting useCulling

to trve. Now, culling is tested against a set of quads instead of individual

biJboards. A quad is a rectangular area (usually a square) with a fixed dimen-

sion. In the case of quadculling, a specified area is suddivided into multiple

quads. Each object that is within an area défined by a quad is algorithmi-

cally associated with that quad. Objects that crass borders between quads are

assigned to each quad they touch. Finally, if a quad is deemed to be visible,

Mission Objects

all objects associated with that quad are marked as visible and subsequently

rendered. The images in Figure 8.25 are taken from an in-game shot to dem-

onstrate what the visible feedback for quadculling looks like. They demon-

strate the discussion thus far.

Configuring (Quad) Culling

I’m sure that this is all just fascinating, but it still] leaves us with the dilemma

of how to choose whether to cull, and then if we choose to cull, how to set

up our culling. Unfortunately, the number of factors involved turns this more

into an art than a science, and the final test is always going to be frame rate.

However, I’]l supply some.rules of thumb to help you out in your choice.

To Cull or Not to Cull

e Do not use culling for small sets (1-100) of billboards.

e Generally, it is better to use culling if the total billboards number at least

two to three times the number of quads (accounts for overhead associated

with algorithm).

¢ For a large number of objects (hundreds to thousands) spread over a large
area (one quarter of map or more), it is best to use culling.

¢ Culling will not help much if your objects are not evenly distributed

between the quads.

Selecting a CullResolution

e Select your CullResolution such that the number of objects comes out
to at least two to three times the number of quads.

e Select your CullResolution such that it can evenly divide OuterRadiusx

and OuterRadiusy. You may need to adjust these slightly to assist this
process. Powers of two are nicest, if possible.

Figure 8.25.

Chapter 8

Visible feedback for

culling.

323

Part ttl

324

Game Elements

Testing Efficiency of Culling

As noted above, the best way to test the efficiency of your culling is to check

your average frame rate. An easy (if possibly slightly inaccurate) way of doing

this is the following.

. Get out of Mission Editor Mode.

. Start the console (~).

. Type: metrics (fps) ;.

. Exit the console (~).

a

-P
Ww

NH

. Walk/fly around your scene and observe your frame rate. Look for hot

spots where it dips.

The metrics (fps) ; command will create a GUI in the upper left corner of

the screen, showing frarne rate and mspf (milliseconds per frame). This GUI

will be shut off when you start the Mission Editor and does not render prop-

erly while it is running.

Additionally, after hitting Apply (when setting your culling parameters),

you can get additional data from the console (~). Each time you hit Apply,

something like the following is printed in the console.

fxFoliageReplicator - Lev: 3 PotNodes: 85 Used: 58

Objs: 656 Time: 0.0016s

fxFoliageReplicator - Approx 0.06Mb allocated.

From this, we can see that the culJing level is 3, which means it is a 2? x 2?

(8 x 8) set of quads. The quads are approximately 58/85, or 68 percent, uti-

lized (i.e., billboards are in 68 percent of the testable nodes). There are a total

of 656 objects (500 billboards and 156 phantom objects due to retries). It takes

about 16 milliseconds to build and render the fxObject. And finally, the entire

fxObject takes up about 0.06 MB.

Other Culling Features

In addition to quadculling, there are some other features in the culling param-

eters section, specifically the view, fade, and alpha parameters. These param-

eters are not affected by the useCul1 parameter and are always on.

ViewDistance and FadeInRegion work together to determine when an

abject begins to fade into view and when it is fully faded in. These two param-

eters form concentric spheres around the camera, where ViewDistance

defines the radius of the inner sphere and FadeInRegion + ViewDistance

defines the radius of the outer sphere. When an object is at the perimeter of

the outer sphere, it will begin to become visible, fading completely in at the

perimeter of the inner sphere. If you wish your objects to stop rendering at an

Mission Objects

alpha greater than 0.0, you can cause this to happen by setting AlphaCutoff

to the desired alpha, between 0.0 and 1.0. See Table 8.25 and Figure 8.26.

ViewClosest and FadeOutRegion also work together, but their effect

is the opposite of ViewDistance and FadeInRegion. Conversely, these two

parameters are used to determine when an object begins to fade out of view

and then become fully transparent or not rendered. Again, these two parame-

ters form concentric spheres around the camera, where ViewClosest defines

the radius of the inner sphere and FadeOutRegion + ViewClosest defines

the radius of the outer sphere. When an object is at the perimeter of the outer

sphere it will begin to fade, fading completely out at the perimeter of the inner

sphere. See Table 8.25 and Figure 8.27.

Chapter 8

Biliboard’s Distance to Camera Render?

Distance > ViewDistance + FadeInRegion

ViewDistance < Distance < ViewDistance +

FadeInRegion

no

yes (if alpha >

AlphaCutoff)

Table 8.25.

Using ViewDistance

ViewDistance < Distance yes

Figure 8.26. Figure 8.27.

ViewDistance and FadeInRegion. ViewClosest and FadeOutRegion.

4 and FadeInRegion.

FadsinRegion FadeOuiRegion

View Distance ViewClosest

[erally Rendered (_]Falty Rendered
(C_] Not Rendered [__] Not Rendered

Billboard's Distance to Camera Render? Table 8.26.

Distance > ViewClosest + FadeOutRegion yes Using ViewClosest and
FadeOutRegion.

ViewClosest < Distance < ViewClosest +

FadeOutRegion

yes (if alpha >

AlphaCutof f£)

ViewClosest < Distance no

325

Part Ill

326

Game Elements

You may wonder why you would want to do this. Consider the case where

you are in a vehicle. Fading out will keep objects from suddenly being inside

the vehicle.

Last, I'l] mention GroundAlpha. This parameter can be used to force the

bottom of billboards to have a lower alpha value. This can be used to mod-

erate the harsh intersection between billboards and the ground, giving the

transition a cleaner look. Just set it to a value lower than 1.0 to see its effect.

Adjust it until you are pleased with the end result.

8.9.11 Foliage Animation

Foliage animation is a feature that allows us to make a more interesting and

convincing scene. Consider the case where your foliage is long grass and

fronds. Wouldn't it be more realistic if the grass and fronds blew in the wind?

Yes, of course it would be, but how do we achieve this look? With foliage

animation, of course! .

Setting SwayOn to true will enable the animation. You may cause your

billboards to sway side-to-side or and front-to-back using the SwayMagSide

and SwayMagFront parameters, respectively. Furthermore, you can add

a little spice to the swaying by allowing the sway times to vary between

MinSwayTime and MaxSwayTime. Last, you may choose to enable SwaySync,

where all objects will sway together in the same way, or you may disable it

and all objects will sway on their own pattern.

One word of caution. If billboards sway so much that they touch each

other, you will get rendering artifacts.

8.9.12 Foliage Lighting

Foliage lighting is the last parameter group we will discuss. It is another group

that is used to make the scene look more interesting. With these parameters,

you may enable self-lighting (LightOn). Furthermore, if you set LightSync

to false and give different values for MinLuminance and MaxLuminance,

each billboard will be self-lit with its own randomly selected level of light.

Please note that this lighting can be animated. If all of the above lighting

parameters are set as noted and then you set lightTime to a nonzero value,

each billboard’s lighting will vary over time. lightTime is the time for a fade

in one direction. So, to fade from MaxLuminance to MinLuminance back to

MaxLuminance will require (lightTime * 2) seconds.

8.10 fxSunlight

As previously mentioned, the Sun object controls scene lighting and fxSunlight

provides the ability to have a visible sun(s) in the sky. Upon first inspection,

Mission Objects Chapter 8

this mission object may seem a bit daunting, with its myriad parameters (lerps,

animations, etc), but it is really quite easy to use. You’ve got to hand it to

Melvin May, though. He hardly makes a resource without a “few” options.

8.10.1 fxSunlight Features

fxSunlight has the following features.

¢ Local flare. A bitmap representing the lens flare of a camera.

¢ Remote flare. A bitmap representing the sun itself.

¢ Position/orientation parameters. To make life easy, the fxSunlight param-
eters that control its position are similarly named to those found in the Sun
mission object: namely, azimuth and altitude.

¢ Animations. Just about every characteristic of the fxSunlight object can be
animated. Furthermore, the animation system is a very flexible key-based

animation system.

8.10.2 Adding a New fxSunlight
1. Start the Creator.

2, Find and click Mission Objects > environment > fxSunlight.

3. Enter a name for this Sun in the pop-up box. (e.g., "Smiley").

4, Click OK.

At this point, if you look around, you should see the default fxSunlight. Now,

do the following.

5. Switch to the Inspector.

6. Locate your new sun (“Smiley”).

7. Select it.

8.10.3 Changing the Sun Images

fxSunlight has two texture parameters.

¢ Media > LocalFlareBitmap

¢ This texture represents a lens-flare effect.

¢ If you do not wish to have this effect, just clear this parameter.

¢ This texture will render if it is in line of sight. If it is blocked by terrain
or an object, it stops rendering.

« It is best to use a texture with an alpha layer.

e Media > RemoteFlareBitmap

- This texture represents the sun itself.

¢ It, too, can be disabled, just by clearing this parameter. 327

Part Ill

328

Game Elements

« Unlike the local flare, this texture renders all the time, although the ter-
rain and objects can occlude it.

¢ Again, it is best to use a texture with an alpha layer.

Note that you should make both textures the same way; that is, if one has an

alpha layer, the second one should too.

8.10.4 Positioning the Sun (Render Position)

Unlike most mission objects, the standard position, rotation, and scale are

meaningless and do not control where the fxSunlight object is rendered. How-

ever, there is a marker at Transform > position. I would just select a value

for this such that the marker does not get in your way while editing.

Render position, when it is not being animated, is based on the same two

concepts as those used for the Sun object, azimuth and elevation. If you do

not understand these concepts, I suggest you quickly reread the Sun object

description in Section 8.5. .

e SunOrbit > SunAzimuth

¢ This controls the horizontal angle of the fxSunlight effect’s bearing about
the z-axis.

- Legal values: [0, 360}.

« Make this the same as Sun > Misc > azimuth.

e SunOrbit > SunElevation

« In simple terms, this controls the elevation, but in reality, this is a polar

angle. Again, if you don’t understand this, see the Sun object description
in Section 8.5.

¢ Legal values: [-90, 90].

» Make this the same as Sun > Misc > elevation.

8.10.5 Changing Lens Flare Effects

You can modify various effects, such as the following.

e LensFlare > FlareTP. If this is not checked, the lens flare will not ren-

der in 3rd POV.

e LensFlare > Colour (rg bi)

¢ If you find a white lens flare boring, you can give it a different fixed
color with this parameter.

* Each individual value can be between 0.0 and 1.0.

¢ Intensity has no effect.

Mission Objects

* LensFlare > Brightness

« You can set a fixed brightness with this parameter.

¢ Legal values: (0.0, 1.0].

e LensFlare > FlareSize

¢ This parameter can be used to scale the flare size to your preference.

« This modifies the size of the sun, too.

¢ Legal values: (0.0, inf).

¢ LensFlare > FadeTime

* This parameter determines how long it takes the lens flare to fade away
when it is occluded. Remember, occlusion turns it off.

« Legal values: (0.0, inf).

¢ LensFlare > BlendMode. Understand that the flare is rendered, meaning
it needs to be blended with the prior contents of the frame buffer. To accom-

modate various effects, fxSunlight supports three blending modes [0 .. 2].

¢ 0. glBlendFunc(GL_SRC_ALPHA, GL ONE)
Flare <rgba> replaces frame buffer <rgba>.

* 1. glBlendFunc (GL_SRC_ALPHA, GL ONE MINUS SRC_ALPHA)
Flare <rgba> is linearly blended with the frame buffer <rgba>.

¢ 2.glBlendFunc(GL_ONE, GL_ONE)

Flare <rgba> is added to frame buffer <rgba>.

If you stopped right now, you would know 90 percent of what you need

to know about the fxSunlight object. However, if you want to do some really

cool things, like animate the color, brightness, and size, or if you want it to

rotate and to move around over time, then continue reading.

8.10.6 Animating the Sun and Lens Flare

Now that we have an fxSunlight object set up, we can make it more interest-

ing by animating some of the sun and lens flare effects. However, before we

take a brief tour of the fxSunlight animations, let’s discuss some common

animation parameters.

Animation Overview

The fxSunlight animations are all similar in nature. So, we'll discuss how they

work in general and then limit our discussion to specifics for each in the fol-

lowing pages.

Animations provide the parameters in Table 8.27. Tables 8.28~8.33 list

the specific parameters for color, brightness, rotation, size, azimuth, and

elevation, respectively.

Chapter 8

329

Part Ill

Table 8.26.

Animation parameters.

Table 8.27.

Color animation.

Table 8.28.

Brightness animation.

330

Game Elements

Enable Option The names of these fields vary, but they all have the same

purpose. They are Boolean values enabling or disabling
animation for this fxSunlight feature.

LERP Enable The LERP enables are Boolean values, enabling linearly

interpolated (smooth) vs. noninterpolated (stepped) transitions.

Single Key Enable Only color animation supports this feature. If this Boolean field

is set to true, the colour animation will use its corresponding
RedkKey for all colour animations.

Min and Max Values

(Extents)

These values define the outer limits of the animation range for

this particular feature. Their types are feature-specific.

Key String(s) Each animation has at least one key string, and some may have

more. These keys are used for determining how the animation

transitions occur.

Key strings contain the letters a through z, where a is the
beginning of a sequence and z is the end. _

Animation Time This floating-point value is used to define how long the

animation takes to play in seconds and fractions of a second.
This time is the round-trip time, i.e., Begin > End > Begin.

Enable Option AnimColour

LERP Enable LerpColour

Single Key Enable SingleColourKeys

Min and Max Values (Extents) MinColour, MaxColour

(four-element floating-point vector)

Key String(s) RedKeys, BlueKeys, GreenKeys

Animation Time ColourTime

Enable Option AnimBrightness

LERP Enable LerpBrightness

Min and Max Values (Extents) MinBrightness, MaxBrightness (floating-point)

Key String(s) BrightnessKeys

Animation Time BrightnessTime

Mission Objects

Enable Option AnimRotation

LERP Enable LerpRotation

Min and Max Values (Extents) MinRotation, MaxRotation (floating-point)

Key String(s) Rotationkeys

Animation Time RotationTime

Enable Option AnimSize

LERP Enable LerpSize

Min and Max Values (Extents) MinSize, MaxSize (floating-point)

Key String(s) SizeKeys

Animation Time SizeTime

Enable Option AnimAzimuth

LERP Enable LerpAzimuth

Min and Max Values (Extents) MinAzimuth, MaxAzimuth (floating-point)

Key String(s) AzimuthKeys

Animation Time AzimuthTime

Enable Option AnimElevation

LERP Enable LerpElevation

Min and Max Values (Extents) MinElevation, MaxElevation (floating-point)

Key String(s) ElevationKeys

Animation Time ElevationTime

Chapter 8

Table 8.29.

Rotation animation.

Table 8.30.

Size animation.

Table 8.31.

Azimuth animation.

Table 8.32.

Elevation animation.

331

Part Ill

332

Game Elements

8.10.7 Maze Runner Lesson #13 (10 Percent
Step)—Celestial Bodies

If you are building the Maze Runner game while you read this guide, we

are now going to create some celestial bodies to go with our game. | have to

apologize, but the celestial bodies we will implement are just too darn big (in

terms of code) to show in the book. Instead, I will summarize their behaviors

here and allow you to look at the scripts yourself.

Loading the Celestial Bodies

The celestial bodies example as been created for you. To add it to the Maze

Runner mission, follow these steps:

1. Open the file “\ MazeRunner\prototype\data\missions\mazerunner.mis”.

2. Open the file “\MazeRunner\Lesson_013\CelestialBodies.cs” and copy the
contents into your copy buffer (like you are doing a copy-paste operation).

3. Paste the data you just copied into the “mazerunner:mis” file before the

following lines:

};

//~-- OBJECT WRITE END ---

Now, you can restart your Maze Runner prototype, load the Maze Runner mis-

sion, and you should see three celestial bodies in the sky.

Dying Star

The first celestial body is the “Dying Star.” This celestial body is designed to

represent a sun in our game-world solar system. This sun is approaching the

end of its life and has shifted from yellow to red. To create the effect of a sun

with moving sunspots,] have animated the brightness, the coloration, the

size, and the rotation. Together with the image we are using for the sun, it

may give the illusion of an active sun surface.

Far Planet

The next celestial body is the “Far Planet.” This celestial body is designed to

represent a distant planet in our game-world solar system. It is stationary rela-

tive to the planet we are on.

Near Moon

The last celestial body is the “Near Moon.” This celestial body is designed to

represent a moon rotating about our planet. Its azimuth changes slowly. over

time; during this transition, it rises and falls in the sky.

Mission Objects

8.11 Physical Zones (P-zones]

Physical zones are one of those simple, “Gee whiz, ain’t that cool” kinds of

constructs. In fact, of all the standard Torque mission objects, these are prob-

ably my favorite. Physical Zones, or p-zones for short, allow you to define

areas in your game with modified gravity and/or velocity modifiers and/or an

applied force. First, we will cover the vety few parameters p-zones have, and

then we’ll leap right in.

8.11.1 velocityMod

The velocityMod attribute does pretty much what it sounds like it will do.

Let’s say we have a p-zone with a velocityMod of 2. If the player enters the

p-zone with a velocity of 10.0 world units per

second, that player will leave the zone with a

velocity of 20.0 world units per second. Actu-

ally, the velocity modification is instantaneous,

occurring directly after entering the p-zone (Fig-

ure 8.28). It should be noted that there are some

issues with extraordinarily high velocityMod values. If the multiplier is too

high, the engine can freeze for long periods or even crash. So, my suggestion

is to keep the values low while you experiment. The upper bounds of [-40.0,

40.0] are really too high for most practical uses.

8.11.2 gravityMod

The gravityMod attribute specifies a local (area inside p-zone) gravity multi-

plier. In other words, if gravityMod is -2 and the game gravity is set to 1.0,

then when the player enters the p-zone, the player will float upward (Figure

8.29). If the player has enough forward velocity upon entering the p-zone, the

player will end up “skipping” across the p-zone until the player falls off the

end or encounters an obstacle. Be careful with 0 or negative gravity zones. If

the player gets stuck with his feet off the ground, he will be unable to move.

Again, high values can cause problems for the engine. Caution is the word.

Chapter 8

Figure 8.28.

Example of

velocityMod.

Figure 8.29.

Example of gravityMod.

333

Part Ill Game Elements

8.11.3 appliedForce

Finally, we have the appliedForce vector. This attribute allows you to create

an area where an invisible force will be applied to the character. This force can

point in an arbitrary direction with a variable strength (Figure 8.30).

Table 8.34 shows values and their effects on the character while on a flat

surface.

Table 8.34 0-99 100-399 400—1999 5000 40000

Effects of appliedForce Practically no Sorta slides Forced walk Forced run Can you say
values. movement. along. cannon?

Figure 8.30. ;
Example of 8.11.4 Maze Runner Lesson #14 (90 Percent

appliedForce. Step}—Teleport Stopper

334

When the player runs into a teleport station, we’d like the avatar to be

stopped. To do this, we can use a p-zone set up as follows.

%$P-zone = new PhysicalZone() {

position = vectorAdd(“l -1 0” , %Obj.getPosition());

rotation = “1 0 0 0%;

scale = “2 2 4”;

velocityMod = “0”;

gravityMod = “1”;

appliedForce = “0 0 0”;

polyhedron = “0 001000 -1000 1";

i

As can be seen, this code is meant to be script-driven; that is, we’ll be substi-

tuting values in for position when we drop the object into the world.

The key things to notice are the following.

1. The position is offset by a vector (we haven’t discussed vectorAdd ()

yet, but it adds two vectors and returns the result). The reason for this is

that the polygon used to define the polyhedron field is offset. Its corner is

at the origin, and therefore the cube is not centered. This can be corrected
either by changing the polyhedron values or by offsetting while placing.
I chose the latter.

2. velocityMod is set to zero. This means that shapes entering the p-zone

should stop moving.

That is pretty much all for now. Later (Lesson-4#15, “Teleport Triggers”), we'll

use this code in our teleporter-building scripts.

Mission Objects

8.12 fxLight
This is another one of those fun mission objects provided by Melvin May. It is

similar to the fxSunlight object, but instead of representing a sun, it is used to

represent in-game lights. Unlike fxSunlight, this object casts light in the scene.

It renders a representation of the light-source flare and casts light on terrain

and other objects.

One major difference between fxLight and fxSunlight is that the fxLight

object requires a datablock.

8.12.1 fxLight New Features

fxLight has the following features.

¢ Offset. fxLight objects can animate their position along a vector. This vec-

tor is relative to the fxLight’s placement position.

e Radius. fxLight objects light the area around them in a sphere. The radius

parameters control the size of this sphere.

¢ Size. fxLight objects, like fxSunlight objects, have a flare. However, because
the distance of fxLights is near, versus the nearly infinite distance of fxSun-
light objects, it is more realistic for their flare sizes to vary based on dis-

tance. The size fields enable this effect.

8.12.2 fxLight Sample

The sample below can be used to produce a simple light that varies between

dark purple and light purple over a three-second period. The light from this

object will extend up to five world units from the center. To mark the location

of the light center, the flare is enabled and uses the file “corona.png” found

with the GPGT Lesson Kit (Figure 8.31).

datablock fxLightData(TestfxLight0) {

FlareOn = true;

FlareBitmap = “~/data/GPGTBase/particletextures/corona”;

LightRadius = “5”;

AnimColour = true;

MinColour = “0.25 0.0 0.25”;

MaxColour = “1.0 0.5 1.0”;

ColourTime = 3.0;

Chapter 8

Figure 8.31.

Flare texture “corona.png.”

335

Part Ill

336

Game Elements

8.13 Paths and Markers

Path mission objects are used to constrain the motion of objects, such as Al

players, cameras, and shapes. They may contain a limited number of markers

(more on this below). As their name would imply, markers mark a point on a

path. Additionally, they supply some information that may or may not be used

by objects that follow the path. ~

8.13.1 Path Object

The Path object is a simple container, derived from the SimGroup class. The

only new features added to Path, which are accessible from script, are the

isLooping field and the getPathID() method.

isLooping

This field is an indicator used by PathCamera objects to determine if a path is a

_ closed loop (isLooping = true) or open (isLcooping = false). This affects

the way the PathCamera’s internal algorithms consume (follow) the path.

getPathID ()

In TGE, interiors (buildings, etc.) can be created with paths embedded in

them. These special interiors (pathedInterior) need a means of tracking their

paths. Thus, beyond having a unique sim ID, a path may have a path ID. Nor-

mal paths, those we put in the world, do not have this.

Limited Number Of Markers?

I noted above that there may be a limit on the number of markers a path can

contain. This is not a limit imposed by the path but by the objects that use

the path. Due to they way these objects transmit their data across the network

(between server and client), paths containing 40 or more markers may cause

issues—specifically an overrun in the number of bits a packet may contain. |

only mention this here so those who are experimenting with pathedCameras,

or the PathShape GG resource (gid =4849) be aware that you may hit a snag

using 40 or more markers in any one path.

Beyond this, you should feel free to use as many markers as you want.

8.13.2 Marker Object

The Marker object is the little beastie that does most of the work defining how

our paths will behave. The fields of a marker define the following.

e position. Position of this marker.

Mission Objects

* rotation. Rotation of this marker.

e scale. Not used.

e¢ seqNum. Sequence in path this marker represents. Valid sequence numbers

are 0..NumMarkers - 1.

e type (Normal, Position Only, Kink)

* Normal. The object hits this point with both position and rotation.

¢ Position. The object only uses the position information during interpola-

tion and retains its current rotation.

¢ Kink. This point in the path is discontinuous.

e msToNext. Time to next point in path.

e SmoothingType

« Linear. Changes in path direction are abrupt (straight line).

¢ Spline. Changes in path direction are smooth (curved).

e Position of next “target” on path. This is determined by the position of the

marker, and its seqNum (sequence number).

* seqNum. These values must start at 0 and continue to NumMarkers -

1.

Wow! All that sounds pretty techy and cool. Unfortunately, most of this infor-

mation is just a hint. The camera is the only object that cares

about all those parameters. If you want to have an AI charac-

ter care about how smooth a path is, you’ll have to write the

appropriate scripts and examine the contents of these fields

yourself. For most simplistic pathing purposes (an AI player

following a path, or a shape following a path), a SimGroup of

markers will be sufficient. You need not specify the remaining information,

unless you actually care to use it in your scripts.

Proper Creation of Path

We’re not going to be doing any work with paths in this book since paths are

mainly used for camera pathing and AI pathing, which we don’t discuss here.

However, we’l] talk briefly about placing a path.

Placing a path might seem a bit confusing at first, but just follow these

simple steps.

1. Add a Path object. When you add a path object, it will show up in the

Inspector tree, but not in the world. Don’t worry; it’s just a container (Fig-

ure 8.32).

2. Select our new path marker as the instant group (Figure 8.33).

3. Add as many path markers as you need (Figure 8.34).

Chapter 8

Figure 8.32.

Figure 8.33.

Figure 8.34.

337

Part Ill Game Elements

Figure 8.35.

Path with four nodes.

Figure 8.36.

Object builder dialog.

338

Spline Smoothing . Linear Smoothing

In Figure 8.35, I added four nodes. The first image shows the path with all

nodes using the spline smoothing type. The second shows the same path

using linear smoothing type. Notice (in the second image) how the turn points

are sharp and the lines between nodes are straight.

8.14 Triggers

TGE Trigger objects are rectangular regions of space that react to the presence

of other objects within that space. In versions prior to 1.4, only players and

vehicles tripped a trigger. Now, items do also.

Triggers track three basic events:

e Enter. Something entered the trigger.

e Exit. Something exited the trigger.

e Inside. Something is inside the trigger region.

8.14.1 Placing a Trigger

To place a trigger, we simply open

the mission we want to contain this

trigger, move to the right location,
and start the Creator. Then, find the

| trigger object under Mission Objects

> Mission > Trigger and select it.

The object builder dialog will pop

up and offer us some choices (Fig-

ure 8.36).

SOs (Tne OC Oa

Mission Objects

I usually just give it a name and press OK, but if you are using a custom

datablock or if you wish to specify the Polyhedron dimensions numerically,

this is your opportunity. I will normally resize, rotate, and translate the trigger

manually.

8.14.2 Trigger Scripting

As noted above, the behavior of triggers is controlled by scripts. The triggers

themselves require a datablock to be built, and subsequently, if we want to

interact with them, we must provide callbacks.

Trigger Datablocks

The trigger datablock specifies exactly one field: tickPeriodMs. This param-

eter tells the trigger how many times to wake up and check for objects inside

the trigger region,

Gatablock TriggerData(defaultTrigger) {

tickPeriodMS = 100; // Wake up ~ten times per second

};

Trigger Calibacks

Once we’ve created our datablock, we need to specify what the trigger does

when. triggered. As we discussed above, a trigger has three basic triggering

actions.

e Enter. Something entered the trigger. When this happens, the trigger’s
onEnterTrigger () callback is called.

function TriggerData::onEnterTrigger(sTriggerDB ,

6Trigger , sEnterObj) {

// Do something

yi

e Exit. Something exited the trigger. When this happens, the trigger’s
onLeaveTrigger () callback is called

function TriggerData::onLeaveTrigger(%TriggerDB ,

Trigger , $lLeaveObj) {

// Do something

;

e Inside. Something is inside the trigger region. Every tickPeriodMs, the
trigger will wake up and check to see if there is something in this region. If
something is inside the trigger, the onTickTrigger () callback is called.

Chapter 8

339

Part Ill Game Elements

function TriggerData::onTickTrigger(%TriggerDB ,

Trigger , %InsideObj) {

// Do something

le

Group Triggers

Group triggering is‘a method whereby we associate objects with a trigger and

these objects are triggered when the trigger is activated (triggered). For this to

work, two conditions must be satisfied.

1. Any objects to be group triggered and the trigger that triggers them must
be contained within the same SimGroup/SimSet; i.e., if we looked at the

Trigger and shapes stored Inspector, our object tree would look something like Figure 8.37.
In same SimGroup.

Figure 8.37.

2. Each object that is to be triggered must specify an onTrigger () and/or an

onTriggerTick() callback.

4055: - StaticShape function ShapeBaseData::onTrigger(%DB , %Obj ,

sTriggerState) {

// Do something

}i
function ShapeBaseData::onTriggerTick(SDB , %Obj) {

// Do something

}e

Now, each object in the SimGroup/SimSet will get an onTrigger() event

when a player or vehicle enters or exits the trigger and an onTriggerTick ()

event every tickPeriodMs while a player or vehicle is inside the trigger.

8.14.3 Maze Runner Lesson #15 (90 Percent
Step)—Teleport Triggers

In this lesson, we will examine the scripts needed to teleport the player from

one teleport station to another. We will also look at the code that combines

the prior parts of the teleport trigger components.

Trigger Datablocks

We could in theory use the DefaultTrigger datablock that comes with the kit,

but it would be better to define a new one so we can guarantee that we have

a unique namespace with which to scope our methods and callbacks. So, we

will define our datablock as follows.

datablock TriggerData(TeleportTrigger) {

tickPeriodMS = 100;

340 };

Mission Objects

Teleport Scripts

Later, when we are writing our level-building scripts (Lesson #17 (Section

9.5.10)), it will be nice if we already have a method for attaching the particle

effects and the physical zone to our teleporter triggers. With a little preplan-

ning, this won’t be that hard to do.

Teleport Trigger Planning

We haven’t discussed it much yet, but the user (and we) will be able to define

new levels by creating simple text files. These files will have “maps” of the

level in them made up of various numbers and letters, representing the posi-

tions of level pieces like blocks, coins, and teleporters.

Knowing that our teleporters will be associated with letters in this file, we

can plan on the teleporter trigger being a sort of parent. We will read the level

file, create a trigger where it tells us to, and store information in the trigger

that tells the trigger which of the three types of teleporters it is. Recall (assum-

ing you jumped ahead to Chapter 14) that there are three types of teleporters

(all of them function the same, but this allows us to have distinct sets that are

connected to each other).

So, let’s just assume that the letters used to represent teleporters are going

to be x, y, and z. Furthermore, let’s assume that the trigger is created first and

then the type is stored in a field named type. Lastly, we will assume that the

level loader will then call our teleport-builder script to add a particle emitter

node and a p-zone in the same position as the trigger.

Teleport Trigger Implementation

All of that planning and assuming gets us some code like the following.

function Trigger: :AttachEffect(%Obj) {

echo(“\c5 Added Teleport Trigger”);

Semitter[X]

emitter [Y]

Semitter[Z]

“TeleportStation_ PEDO”;

“TeleportStation_PED1”;

“TeleportStation_ PED2”;

seffect = new ParticleBmitterNode() {

position = vectorSub (%0bj -.getWorldBoxCenter(), “O 0 2”);

rotation = “1 0 0 0”;

scale = “1 1 1”;

dataBlock = “basePEND”;

emitter = %emitter[%Obj.type];

//emitter = “TeleportStation_PEDO”;

velocity = “1”;

bs

Chapter 8

341

Part lll

342

Game Elements

%$Obj.myEffect = %effect;

%Pzone = new PhysicalZone() {

position = vectorAdd(“1 -1 0” , %Obj.getPosition());

rotation = “1 0 0 0”;

scale = “2 2 4”;

velocityMod = “0”;

gravityMod = “1”;

appliedForce = “0 0 0”;

polyhedron = “0.0000000 0.0000000 0.0000000 1.0000000

0.0000000 0.0000000 0.0000000 -1.0000000

0.0000000 0.0000000 0.0000000 1.0000000”;

};
$Obj].myPzone = %Pzone;

Basically, this function creates an array of particle emitter datablock names

indexed by x, y, and z. Then, it creates a particle emitter in the position of

the trigger (ID passed as argument to this function) and looks at the stored

type to dereference the datablock array, getting the correct datablock name to

match the type.

Next, the function creates a p-zone (remembering to offset it a little) in

the same position as the trigger.

After this function is finished executing, there will be a trigger, a particle

emitter node, and a p-zone all in the same location. Voila! A teleporter station.

So, how do we make the teleporter “go”? Let’s do that next.

Trigger Calibacks

To make the teleporters do work for us, we need to implement the onEnter-

Trigger () and onLeaveTrigger() callbacks.

Instead of showing you the code (which you can just load and examine),

I will present the methodology used to teleport correctly.

onEnterTrigger ()

This callback has the lion’s share of the work. Initially, all triggers will start

off active. When the avatar runs into a teleporter trigger, that trigger executes

the following steps.

1. Check to see if it is disabled. If so, the callback aborts.

2. Enable the p-zone it owns (to be sure the avatar gets stopped).

3. Check for the existence of other triggers. When we create triggers in our
level-building scripts, all triggers are added to one of three trigger groups

Mission Objects

based on their type. Then, if we recall that all SimObject children can deter-

mine what group (if any) they are stored in, it will become clear that each
trigger can get the group it belongs in and choose a trigger from that group
until it finds one that is not itself.

4. Disable the p-zone on the target trigger (so player is not stopped on exiting

that trigger).

5. Disable the target trigger (to prevent teleport loops).

6. Do some fading effects and schedule a setTransform() call, moving the
avatar to the location of the target trigger.

Once the avatar arrives at the target trigger, it has to leave that trigger to

reactivate it. Also note that the setTransform() call moves the avatar and

causes the current trigger to call its own onLeaveTrigger() callback, thus

reactivating it. ,

onLeaveTrigger ()

This callback has very little to do. Basically, when the avatar leaves the trigger

area, the trigger will be told to re-enable the trigger and to reactivate ()

the p-zone.

Tricky Bits

While examining the scripts, you may notice a couple of bits of code that we

have not yet discussed. The first of these is a call to getRandomObject ().

It is being called on a SimGroup. This is a method I have provided in the

included “systems” script files (loaded when we set up our environment).

This method simply iterates over a SimSet (or child) and randomly selects an

entry from the set, returning the ID of the selection.

$Trigger.getGroup() .getRandomObject ()

The second bit involves the use of the function getWords (). In this line

of code, we’re replacing the position part of the player’s transform with a new

position while retaining the player’s orientation information. This is done by

getting the “words” representing the orientation. As you will learn later, a

word is any string, and words are separated by spaces. Thus, we can look at

the transform as a string containing seven words. Using getWords (), we sim-

ply get the top four words and then paste them onto a new position matrix,

making a new transform.

newTransform = %newPos SPC getWords(%oldTransform, 3 , 6);

Chapter 8

343

Part tl

344

Game Elements

Trigger Cleanup

It is also worth mentioning that, when the trigger is destroyed, it will call its

onRemove () callback, which will delete the effects attached to this trigger.

Nice and clean.

function TeleportTrigger::onRemove(SDB, %Obj) {

}

if(isObject(%0bj.myEffect))

%Obj-myEffect.delete();

1£{ isObject(%Obj.myP-zone))

Obj .myPzone.delete();

8.15 Mission Objects Summary

In this mega-chapter, we have completely examined 14 major mission-

placeable objects.

Terrains. We learned about how the terrain is a 2 kiloworld unit x 2 kilo-

world unit square that tiles infinitely in the world plane.

Water Blocks. We learned how to represent liquid bodies using this object

and how to interpret the myriad features and special effects it provides.

Sky. We learned how this object is responsible for the sky box, clouds,
general fog, up to three fog bands, and general visible distance limits.

Sun. We learned that this object controls the scene lighting. We learned to
control the source of the scene lighting through azimuth and elevation
and the coloration and intensity of scene lighting through the color and
ambient fields.

Precipitation. We learned to create a “rain box” that can be used for a

whole lot more than just rain.

Lightning. We learned about both generated lightning and textured light-

ning.

Audio Emitters. This meaty topic took a while to cover, but we came to
understand that the versatile audio emitter object can be placed in the

scene to produce 2D and 3D sounds. We learned all about general gain

equations, looping and loop gaps, the 3D sounds zones (inner cone, outer

cone, and outside volume), 3D gain distances (reference distance and max

distance), and how to interpret the visual feedback this object provides
while in debug mode.

Particle Emitters. Following one meaty topic with another, we jumped into
a discussion of the particle system and learned to differentiate a Particle-

EmitterNodeData (PEND) from a ParticleEmitterData (PED) from a Particle-

Data (PD), as well as about the features each of these classes provide.

Mission Objects

fxShapeReplicators and fxFoliageReplicators. We had fun discussing
placement rules, the concepts of seeds and counts, how to select restric-

tions and restraints, how to enable or disable shape interactions, and how

to set up the best culling for our needs.

fxSunlight. We learned that this object provides the ability to render celes-

tial bodies and supports a humongous set of features.

Physical Zones. We saw that a lot of fun can be had combining the
velocityMod, gravityMod, and appliedForce fields of these objects.

fxLight. We covered this dynamic light object briefly.

Paths and Markers. Here we examined how to create proper paths with
these two classes and what their individual features mean and do.

Triggers. Lastly, we discussed one of the most important mission objects,
the trigger, which enables a wide variety of interactions with its individual
and group triggering features.

Chapter 8

345

Chapter 9

Game Setup Scripting

There are several scripting tasks that we will deal with in just about every

game we make. This chapter gives an overview of the tasks related to setting

up and maintaining a game. It will familiarize you with the fundamental Sim

scripting classes and then examine I/O scripting. The following specific topics

are covered in this chapter.

¢ SimSet and SimGroup. These are two container classes acting as base
classes to the GuiControls and to the ScriptObject and ScriptGroup classes,

respectively.

¢ ScriptObject and ScriptGroup. These two classes are used to create

scripted classes. These special classes give us the ability to associate fields

and methods with scripted classes, thus allowing us to neatly compartmen-

talize our scripts.

¢ Device Inputs and Action Maps. We will discuss how to build and use

action maps to capture and redirect device inputs.

e File I/O. Here we will review the use of the file I/O classes.

¢ Compiling and Executing Files. At some time, we’ll want to compile and

execute scripts from files, so we’ll talk about this briefly.

9.1 SimSet

SimSet is the root class in a hierarchy of SimObject containers. It is respon-

sible for providing the base functionality and structure for all subsequent

SimObject containers. It (and its children) should be treated as a traditional

queue.

_ A SimSet is designed to hold a list of handles to SimObjects (or children

of SimObjects). The SimObject is a fundamental class upon which all other

objects that we will deal with are based.

Any one SimSet may contain only one instance of a handle to an existing

SimObject, but a SimObject may be tracked by any number of SimSets; that

is, no matter how many times we add() a handle to a SimSet, it is only stored

there once, but we can add the handle to as many SimSets as we like.

 Remember, when you

see a code snippet

with a statement like:

\\ts04 (a) ;, this

means you can run

the GPGT Lesson Kit,

Start either of the

included missions, and

then in the console

(~] you may type:
\\ts04 (a); torun

//ts04 (a); \ the sample.

%SO = new SimObject (); | ———_————

$SetO = new SimSet();

$Setl = new SimSet();

Part Ul

348

Game Elements

$SetO.add{ %S0);

%$SetdO.add(%S0);

echo(“Set O contains ”, %SSetO.getCount() , “ objects.”);

eSetl.add(%S0);

SSetl-add(%Set0O);

echo(“Set 1 contains ”, %Setl.getCount() , “ objects.”);

The above code produces the following output.

Set 0 contains 1 objects.

Set 1 contains 2 objects.

SimSet containers do not assume responsibility for their contents; that is,

if we delete a SimSet, the handles and therefore the objects they represent are

not deleted. However, when an object is deleted, it is automatically removed

from all SimSets.

//¢804 (b);
%Setl.delete(); // Self delete

echo(“Set 0 contains “, %SetO.getCount() , “ objects.”);

Seti is now deleted, but SO and Seto still exist, so the above code produces

the following output.

Set 0 contains 1 objects.

Because SimSets behave like queues, they have a front and a back. Objects

added to a queue are added to the back of the queue. Furthermore, the front of

the queue is index 0, and the back of the queue is index getCount () - 1.

//ts04(c);
$S1 = new SimObject ();

%S2 = new SimObject ();

$Set2 = new SimSet ();

SSet2.add({ %51);

SSet2.add{ %S2);

echo(“The ID of S1 is: ”, %Si.getID());

echo(“The ID of S2 is: ”, %52.getID());

echo({ “Object at front of Set 2 is ”, %SSet2.getObject(0));

echo(“Object at back of Set 2 is ", %Set2.getObject(1));

The above code produces the following output (IDs may vary).

Game Setup Scripting

The ID of Sl is: 2391

The ID of S2 is: 2392

Object at front of Set 2 is 2391

Object at back of Set 2 is 2392

We can manipulate the position of objects directly as long as we have a

handle to the SimSet and the object.

//ts04 (da) ;
echo(“The ID of Sl is: ”%, %Sl.getID());

echo(“The ID of S2 is: ”, %S2.getID());

SSet2.bringToFront(%52);

echo(“Object at front of Set 2 is ”, %Set2.getObject(0));

echo(“Object at back of Set 2 is ”, %Set2.getObject(1));

%Set2.pushToBack(%S2);

echo(“Object at front of Set 2 is ”, %Set2.getObject(0));

echo(“Object at back of Set 2 is ”, %Set2.getObject(1));

The above code produces the following output (IDs may vary).

The ID of S1 is: 2409

The ID of S2 is: 2410

Object at front of Set 2 is 2410

Object at back of Set 2 is 2409

Object at front of Set 2 is 2409

Object at back of Set 2 is 2410

We can remove objects from our list at any time. This does not delete

them.

//ts04 (e) ;
$Set0O.remove(%SQ); // Take %SO our of SimSet 1

echo(“Set 0 contains ”", sSetO.getCount() , “ objects.”);

The above code produces the following output.

Set 0 contains 0 objects.

We can also empty a SimSet in one fell swoop.

//ts04(£) ;
echo(“Set 2 contains ”, %Set2.getCount() , “ objects.”);

Chapter 9

349

Part Ili

350

Game Elements

$Set2.clear(); // Remove all objects from SimSet 2

echo(“Set 2 contains ”, %Set2.getCount() , “ objects.”);

The above code produces the following output.

Set 2 contains 2 objects.

Set 2 contains 0 objects.

Lastly, for debug purposes, a function is provided to dump the contents of

a SimSet to the console:

//ts04 (gq);
S3 = new SimObject();

$54 = new SimOb ject ();

echo(“The ID of S3 is: ”, %S3.getID());

echo(“The ID of S4 is: ”, %S4.getID());

$Set3 = new SimSet();

%Set3.adad(%S3);

SSet3.add(%S4);

%Set3.listObjects();

The above code produces this output (object IDs may be different):

The ID of $3 is: 2418

The ID of S4 is: 2419

2418: SimObject

2419: SimObject

A SimSet cannot hold a reference to itself. The reason for that is explained

in the next section.

9.2 SimGroup

A SimGroup is similar to a SimSet with a few exceptions. Any one SimObject

may only be tracked in one SimGroup at a time. It can simultaneously be in

any number of SimSets, but if we add a SimObject to a SimGroup when it is

already present in another SimGroup, the reference to the SimObject will be

removed from the prior SimGroup automatically.

//ts05 (a);
%SO = new SimObject();

$Group0 new SimGroup (};

%Groupl = new SimGroup();

$SetO = new SimSet ();

Game Setup Scripting Chapter 9

SSet0.add(%S0);

sGroup0.add(%SQ0); /

echo(“Set 0 contains ”, %SetO.getCount() , “ objects.”);

echo(“Group 0 contains ”, %GroupO.getCount() , “ objects.”);

echo(“Group 1 contains ”, %Groupl.getCount() , “ objects.”);

SGroupl.add(%S0);

echo(“Set 0 contains ”, %SetO.getCount() , “ objects.”);

echo(“Group 0 contains ”, %Group0Q.getCount() , “ objects.”);
“" n echo(“Group 1 contains ”, %Groupl.getCount() , objects.”);

sO can only be in one SimGroup at a time, but it can be in both a SimSet and

a SimGroup at the same time, as the following output shows.

Set 0 contains 1 objects.

Group 0 contains 1 objects.

Group 1 contains 0 objects.

Set 0 contains 1 objects.

Group 0 contains 0 objects.

Group 1 contains 1 objects.

Second, and of great importance, if we delete a SimGroup, this causes the

automatic deletion of all objects in the SimGroup. This is the reason SimSets

may not reference themselves (SimGroup is a child of SimSet).

//ts05 (b);
echo(“Set 0 contains ”, %SetO.getCount() , “ objects.”);

$Groupl.delete();

// Self deletes, and automatically deletes %S0

echo(“Set 0 contains ”, %SetO.getCount() , “ objects.”);

By deleting Group1, which contained $0, we have also deleted so, thus

removing it from Set0, as can be shown by the following output.

Set 0 contains 1 objects.

Set 0 contains 0 objects.

9.3 ScriptObjects and ScriptGroups

When I first ran across these two classes, I was a bit puzzled and didn’t see

the value of having a class dedicated to scripting. 1 mean, hey, we have vari-

ables and functions. We’ve got packages. What else do we need? Then, little

by little, I experimented and soon found that these two classes are practically

indispensable.

351

Part Ill Game Elements

9.3.1 ScriptObject

The ScriptObject is a noncontainer class provided to allow the creation of

TorqueScript-only classes. It is derived from the SimObject (not SimSet) class.

This class provides the ability to group data fields and to associate the class with

one or more namespaces. The general syntax of a ScriptObject is as follows.

// In TorqueScript

S$handle = new ScriptObject([

{class = AClassName;]

{superClass

[dynamic _fieldO = InitialValue0;]

[dynamic _fieldN = InitialValueN;]

};

AnotherClassName;]

This syntax is simpler than it looks. Let’s break it down in Table 9.1.

Table 9.1

ScriptObject syntax.

352

 gs 2 fod oe ae atiae Reward

thy

The variable where the object’s handle will be stored.

Name

(optional)
Any expression evaluating to a string, which will be used as the
object’s name.

class

(optional)

A special field that tells the Torque engine to insert ACLassName

into the namespace calling sequence for this object between Name
and ScriptObject.

superClass

(optional)

A special field that tells the Torque engine to insert

AnotherClassName into the namespace calling sequence for
this object between Name and ScriptObject.

dynamic_fieldN
(optional) As with any other object created in script, you may add as many

dynamic fields as you wish.

Note that, if you use both class and superClass, the object’s calling

sequence will be the following.

Name > AClassName > AnotherClassName > ScriptObject > SimObject

9.3.2 ScriptGroup

The ScriptGroup class is a container class that provides all the same features as

a ScriptObject with one minor difference—it is derived from SimGroup instead

of SimObject. Thus, objects created from this class have all the behaviors of a

ScriptObject while also having the behaviors of a SimGroup container.

Game Setup Scripting Chapter 9

The namespace chain for this object looks like the following.

Name > AClassName > AnotherClassName ~ ScriptGroup > SimGroup > SimObject

It’s an Object

Instances of ScriptObject and ScriptGroup classes are objects. This means they

can have fields associated with them.

sobj] = new ScriptObject(Square) {

width = 10.0;

height = 5.0;

};

Now, we can write little functions to manipulate them.

//ts06();

function printAreaOfSquare (%Square) {

echo(“The area of this square is: ”, %Square.width * %Square.height) ;

To run this, we would have to type printAreaOfSquare(%obj);,

producing:

The area of this square is: 50

They Support Namespaces

In truth, it wouldn’t be great if we had to write a named function for each

case we wanted to handle; better would be to use namespaces and overload

a single method name.

Because ScriptObjects and ScriptGroups support namespaces, we can do

the following.

//ts07();

%obj0 = new ScriptObject(Square) {

width = 10.0;

height = 5.0;

}i

%$o0bj1 = new ScriptObject(Circle) {

radius = 10.0;

}e

353

Part dl

354

Game Elements

function Square::printArea(Sthis) {

echo(“The area of this square is: ”,

Sthis.width * %$this.height);

}
function Circle::printArea(@this }) f{

at
echo(“The area of this circle is: ?

this.radius * &this.radius * 3.1415927 35;
O
—
,

quare.printArea();

sob ji.printArea ();

The above code would give us the following output.

The area of this square is: 50

The area of this circle is: 314.16

This is better, but now it seems we have to name ail of our circles “Circle”

if we want this to work. That kind of kills the ability to use names in addi-

tion to IDs to reference objects. Fortunately, there are two key words that

we can use to add generic namespaces to the objects we create—class and

superCiass.

//ts308 ();

sob 3 = new ScriptObject(Squared) {

class = “Square”;

width = 10.0;

height = 5.0;

hs

Sob} = new Scriptobject({ Squarel } {

class = “Square”;

width = 10.0;

height = 50.0;

G

Square0.printArea ();

Squarel .printArea (};

The above code would give us the following output.

The area of this square is: 506

The area of this square is: 500

Game Setup Scripting

So, class seems pretty useful, but what is this superClass business? It

allows us to use yet another class name in the chain, below the one added by

the class keyword.

//ts09();

function Doberman::printMessage(%this) (

echo(“A ”, Sthis.getName(), “is a...”);

Parent: :printMesage(%this);

function Canine::printMessage(%this) {

echo(“... “, %this.class, “ which is a ...”);

Parent: :printMesage(%this);

function Animal::printMessage(%this) {

echo(“... ”, Sthis.superClass, “.”);

Sob) = new ScriptObject(Doberman) {

class = “Canine”;

superClass = “Animal”;

VG

S0b] .printMessage();

The code above produces the following interesting output.

A Doberman is a

Canine which is a

Animal.

Calibacks, Too?

ScriptObjects and ScriptGroups support the ::onAdd() and : :onRemove ()

callbacks. This means that we can have them do initialization and cleanup

work when we create/delete them, just like when we create other mission

objects.

If this is not very clear, please continue reading. In Section 10.4, I will give

an overview of the callback concept and discuss a few important standard

callbacks.

Chapter 9

355

Part Il

Figure 9.1

Flow of inputs for TGE.

356

Game Elements

Not Networked

Just like dynamic fields, neither ScriptObject nor ScriptGroup are networked;

that is, instances of these classes created by the server will be visible only to

the server (except for the single-player and listen-server cases (see Section

2.1.15), where the client is local).

If you want information shared with the clients from either of these

classes, you will have to write networking scripts to do so.

9.4 Device Inputs and Action Maps

When we speak of inputs in the context of TGE, we are talking about user

inputs from keyboards, mice, joysticks, and other devices. Although other

types of inputs are possible, the only ones we are interested in are those that

are used to control gameplay. That said, inputs flow into and through TGE as

follows (Figure 9.1).

1. The OS processes inputs and passes them to the TGE platform layer.

2. The TGE Platform identifies and categorizes the inputs and passes them on

to the game.

3. The game processes the input if it can or ignores it if there is no defined
action for the input.

The game input processing is the part we are interested in. As can be seen

from Figure 9.1, the input is processed within the game as follows.

1. The GlobalActionMap gets first dibs on the inputs. If it has no mapping for
the input, the input is passed on to the GUI, more specifically the Canvas.

2. The Canvas attempts to process the input, but passes the input on if it has

no GUI controls programmed to use it.

3. The input is passed to any active action maps for processing. If none of

the currently stacked action maps is coded to use the input, the input is

dropped.

Global

ActonMap

TGE

Platform

Layer

Game Setup Scripting

ActionMap is a special class designed to capture and redirect inputs.

There are two kinds of ActionMap: the GlobalActionMap and the normal

ActionMap. The main differences between these are as follows.

¢ GlobalActionMap. This is the daddy of input processors and supersedes all

other processing methods. This action map should not be popped from the

processing stack.

¢ ActionMap. This is a generic action map. It takes lower priority than all

other processing methods. These action maps can be pushed and popped

from the processing stack as the game’s requirements change.

9.4.1 Defining Action Maps

To create a new (blank) action map, we use the following syntax (explained

in Table 9.2),

new ActionMap(ActionMapName);

new A keyword instructing TGE to create a new instance of the following

console class. Returns a handle to the new ActionMap.

ActionMap Console class name for action maps.

 ActionMapName | The name for the new action map.

Binding Inputs to Actions

Subsequent to creating a blank action map, we must bind inputs to actions (or

responses). This binding associates a specific input with a specific function or

scripted response.

To add new mappings, use one of the following two functions.

ActionMapName.bind(device , action , [modifier spec ,

This first binding method, bind, is used to bind a single command to an

action (Table 9.3). It has the further ability to modify the behavior of pointing

devices via special modifiers. The command (a function) bound to this action

will be automatically passed a value (as the first and only argument to the func-

tion) corresponding to whether the device is in the on or off (pressed or released)

state. A function that is used for binding should have the following form.

]

Chapter 9

Table 9.2.

Creating a new action

map. :

command); f

357

Part Ill

Table 9.3.

Adding new mappings

using bind.

* Table 9.4.

Adding new mappings

using bindCmd.

358

Game Elements

// Assume this is bound to a mouse button

function aBindFunction(%val) {

if(%val) {

echo (“Mouse button was pressed.”);

}

else {

echo (“Mouse button was released.”);

The second binding function is the following.

ActionMapName.bindCmd(device, action, makeCmd, breakCmd);

This second binding method, bindcmd, will bind one function to the on

(break) event and one function to the off (break) event (Table 9.4). Both func-

tions are optional, but at least one should be specified. A function used for

this kind of binding takes no arguments at all.

Tables 9.5-9.7 are provided for your reference and describe the most com-

monly used devices, actions, and modifiers. For a full listing, please see the

appendices.

ActionMapName | Previously defined action map.

bind Console method used to add a new action for the specified key.

device Device name (see Table 9.5).

action Device action (see Table 9.6).

modifier spec | Special modifiers (see Table 9.7).

command Command to execute when this binding triggers.

ActionMapName | Previously defined action map

bindCmd Console method used to add a new action for the specified key.

device Device name (see Table 9.5).

action Device action (see Table 9.6).

makeCmd Command to execute on key press.

breakCmd Command to execute on key release.

Game Setup Scripting

keyboardaN | This is the Nth keyboard hooked up to the system. For the first keyboard,

either keyboard or keyboard0 is acceptable.

mouseN This is the Nth mouse hooked up to the system. For the first mouse,

either mouse or mouse0 is acceptable.

joystickN | This is the Nth joystick or gamepad hooked up to the system.

unknownN This is the Nth unknown device hooked up to the system. In other

words, some device has been sampled, but TGE doesn’t know what it is.

button0o, This is a mouse, joystick, or gamepad button press.

button, For the mouse, buttons 0, 1, and 2 are left, right, and middle
tesn buttons, respectively. See the appendix for other button

button mappings.

a..z These are keyboard inputs. Because this list is so long and in
A..2 order to accommodate possible variances for special keyboards
0..9 and other devices, a GUI has been provided with the GPGT

F1l..F12 Lesson Kit that displays the current action, be it keyboard, mouse,

etc. joystick/gamepad, or other device. Simply start the GPGT Lesson
Kit and click GUIsSampler > guiInputCtrl. Follow the instructions

provided in the sample.

shift These are modifiers and are not used standalone, but they are
ctrl included in the action string; for example, shift p is the

alt SHIFT key and the P key pressed at the same time.

lshift, rshift, | These are special modifier actions.
letrl, retrl,

lalt, ralt

D &x %y Has dead zone. This is used to add a dead zone for the mouse.
Motions in this zone will not be recorded. This can be used to

remove the jitter caused by a “nervous hand.”

S %s Has scale. This is used to scale the mouse motion (by a multiple).

I Inverted. This is used to invert the mouse.

R 3s Has scale. Same as S.

Chapter 9

Table 9.5.

Devices.

Table 9.6.

Actions.

Table 9.7.

Special modifiers used to

modify mouse inputs.

359

Part Ill

360

Game Elements

Bind Samples

Before going any further, let’s look at a few binding examples and break them down.

moveMap.bind(keyboard , “alt c” , toggleCamera) ;

In the above binding, we have bound the toggleCamera() function

to the alt c event. As soon as the ALT and C keys are pressed (together),

toggleCamera () will be executed on that client. When the toggleCamera ()

method is called, the engine will pass a 1 or a O as the first argument to the

function. A 1 represents a make (key-press) event, while the 0 represents a

break (Key-release) event. So, remember that the function will be called twice

per key press, not once.

Ww“ ” moveMap.bindCmd (keyboard , “n

“NetGraph::toggleNetGraph();” , “”);

In the above binding, we have bound theNetGraph: :toggleNetGraph ()

method to the n make event. As soon as the N key is depressed, NetGraph: :

toggleNetGraph () will be executed on that client. Nothing is scheduled to

occur on the key-break (release) event.

MTF moveMap.bindCmd (keyboard , “n” '

“NetGraph: :toggleNetGraph ();”);

In the above binding, we have bound the NetGraph: :toggleNet-

Graph() method to the n break event. As soon as the N key is released,

NetGraph::toggleNetGraph() will be executed on that client. Nothing is

scheduled to occur on the make (key-press) event.

Multiple Binds

It should be noted that binding more than one key to the same action (using

the same action map) is not allowed. TGE wil] do its best to preempt this

kind of assignment. Normally, if one attempts to bind two inputs to the same

response, the second binding will silently fail. However, this behavior is not

consistent. So, it is best to be aware of this and to check your action maps for

duplicate assignments.

To be clear, the following is a multiple bind.

moveMap.bindCmd(keyboard , “n” , “” ,

“NetGraph: :toggleNetGraph();”);

moveMap.bindCmd (keyboard , “m

“NetGraph::toggleNetGraph();”);

Game Setup Scripting

This will only bind the toggleNetGraph function to the N key.

Overriding Binds

Overriding binds is a different story. You may override a bind at any time you

wish. Simply specify the bind with a new set of functions.

uw awn Wa

” moveMap.bindCmd(keyboard , “n ,

“NetGraph: : toggleNetGraph();");

moveMap.bindCmd (keyboard , “n” , “” , “nukeEM();”);

The above example rebinds the N key. It will now call the function nukeEm()

on a break (key-release) event.

Unbinding

There will be cases where we want to undo a binding. To do this, we use the

following syntax (explained in Table 9.8).

ActionMapName.unbind(device, action);

moveMap.unbind(keyboard , “n”);

Saving Binds

We will also find it useful to save our binds on occasion. The ActionMap class

provides this ability as follows (Table 9.9).

ActionMapName.save([| filename] , [append]);

moveMap.save(“~/client/myActionmaps/movemap.cs” , false);

ActionMapName Previously defined action map.

unbind Console method used to remove an action from an action map.

device Device name (see Table 9.5).

action Device action (see Table 9.6).

ActionMapName Previously defined action map.

save Console method used to save/dump an action from an action map.

filename A valid filename to dump the action map to. If no filename is

(optional) specified, the action map is dumped to the console.

append A Boolean value specifying whether to append to the file or
(optional) overwrite it. The default (false) is to overwrite.

Chapter 9

Table 9.8.

Undoing a binding.

Table 9.9.

Saving binds.

361

Part III

Table 9.10.

Activating a nonglobal

action map.

Table 9.11.

Deactivating a nonglobal

action map.

362

Game Elements

ActionMapName Previously defined and bound action map.

push Console method used to activate the action map and
place it on the top of the nonglobal action map stack.

ActionMapName Previously defined, bound, and activated action map.

pop Console method used to deactivate an action map
and remove it from nonglobal action map stack.

Activating Action Maps

Once an action map has been created and the bindings have been assigned, it

must be activated in order to be used. To activate a nonglobal action map, we

use the following syntax (Table 9.10).

ActionMapName.push();

Subsequently, an active nonglobal action map can be deactivated using

the following syntax (explained in Table 9.11).

ActionMapName.pop ();

Please note that popping only removes the specified action map from the non-

global action map stack. All other action maps stay in place.

Deactivating the GlobalActionMap

It should also be noted that the GlobalActionMap does support both the

push() and the pop() console methods. However, it is not suggested that

you use these methods on the GlobalActionMap. That said, you may use the

pop () console method to temporarily disable the GlobalActionMap and the

push() console method to reactivate it at a later time.

Nonglobal Action Map Stack

We have alluded to the concept of stacking but have not clearly stated what

this means in the context of action maps.

The concept of stacking only applies to normal action maps as no stack-

ing order will allow them to take precedence over either the GlobalAction-

Map or the Canvas. An action map is placed on the top of a virtual stack of

Game Setup Scripting Chapter 9

nonglobal action maps when it is activated (pushed). Action maps higher

in the nonglobal action map stack will be first to process any inputs which

have made it past the Canvas. Therefore, if an action map redefines a binding

defined by an action map lower in the stack, the binding of the higher action

map will take precedence. Stacking action maps is a nice way of compositing

action bindings based on current context.

9.4.2 Maze Runner Lesson #16 (90 Percent Step)}—
MoveMap

In this short lesson, we will examine the action map that is included with the

prototype content and discuss some small changes to it and other scripts that

will ensure the behavior we are expecting from our game.

Required Behavior

In our game, we want the following key mappings.

Ww Move forward.

A Move left.

S Move backward.

D Move right.
The MoveMap defined

in the prototype

content used for

MazeRunner is

standard and matches

the one provided

with all TGE samples,

including the free

Demo and the FPS

Starter kit that comes

with the full SDK.

 SPACEBAR = Jump.

Mouse Move Camera yaw and pitch.

TAB Switch Ist and 3rd POV.

We would specifically like to disable (eventually) the following key mapping.

ALT+C Free camera mode.

We don’t want people using free-camera mode to cheat and find coins without

risking their avatar’s life.
MoveMap

The prototype content we copied into our “\MazeRunner” directory con-

tains two files that define an action map already implementing the above

mappings as well as many others. The name of this action map is MoveMap.

One of the things that new users find confusing is the fact that MoveMap

is created in two places. It is created in the file “\MazeRunner\prototype\cli-

ent\scripts\default.bind.cs” and in the file “\MazeRunner\prototype\client\

config.cs”.

So, where do we go if we want to modify this action map? Well, if we

look in the function initClient() in the file “\MazeRunner\prototype\

client\init.cs”, we will see the following code.
363

Part Il Game Elements

// Default player key bindings

exec (“./scripts/default.bind.cs”) ;

exec (“./config.cs”);

The first file, “default.bind.cs”, is the correct location to define new bindings

for the moveMap action map. However, if you do decide to modify or add

bindings, be sure to delete the “config.cs” file first. Otherwise, it will wipe out

the changes you made in “default.bind.cs”. The “config.cs” file is automati-

cally stored by the scripts that come with the prototype and is meant to reflect

any changes we might make using the options dialog. However, adding new

bindings and/or functions needs to be done by hand, so remember to always

stop the engine, delete the “config.cs” file, and (only) then add your new

bindings to “default.bind.cs”.

Making Our Changes

In our game, we are happy with the current mappings, except that we wish

to eventually disable free-camera mode. So, when we want to do this, simply

remove the following line from “default.bind.cs”.

moveMap.bind (keyboard, “alt c”, toggleCamera) ;

For now, I suggest leaving this in, but when we get ready to release our game

to the public, this line needs to be removed. Additionally, we might want to

remove the following code from “default.bind.cs”.

function toggleCamera(%val) {

if (%Sval)

commandToServer (‘ToggleCamera’);

 If you are having

trouble finding newly

added files, you may

at any time do the

following to refresh

the file manager.

SoldModPath =

getModPaths ();

setModpaths (“”);
9.5 File /O
Torque has a file manager that maintains a working list of all the files found

in the game directory and all subdirectories. This list is created on start-up.

Additionally, TGE 1.4 is capable of finding files added to one of the mod paths

after the game has started. .

9.5.1 Locating Files setModpaths (; .
$oldModPath) ; In order to locate files listed by the file manager, we use two functions pro-

\ vided by TGE: findFirstFile() and findNextFile(). These func-

tions are meant to be used together.

364

Game Setup Scripting Chapter 9

path, a name, and an extension. You must add the appropriate wildcards when

When using the file finding functions, remember that file names consist of a |

searching for files down a path.

echo(findFirstFile(“*/specialPrefix_*.cs”));

findFirstFile ()

This function will locate the first instance of a specified file or filename pat-

tern in the file manager’s list. It then marks the location of this file in the list

and returns the filename. The pattern supplied to this function may contain

wildcards.

findFirstFile(pattern);

Try the following example.

//ts11();
echo(findFirstFile(“*.cs”));

Please note that subsequent calls will return the same value. It is impor-

tant to understand that each time this function is used, it sets the location of

firstMatch. Thus, having two functions calling this function in an overlap-

ping fashion will have undesirable results.

findNextFile ()

Having found the first instance of a filename or filename pattern, we may

wish to find subsequent instances. This function does that for us. It will return

one new match each time we call it until it finds no more matches, at which

time it will return the null string (“”).

findNextFile (pattern);

Try the following example.

//ts12();

echo(findNextFile(“*.cs”));

If we specify a pattern that does not match that of our call to findFirst-

File(), results will be indeterminate.

The following function lists all files found matching a specified pattern.

365

Part Ill

Table 9.12.

Wildcards supported by

TGE.

366

Game Elements

//ts13();
function listAllFiles(tpattern) {

$filename = findFirstFile(%pattern);

while(*” !S= %filename) {

echo (filename) ;

$filename = findNextFile(%pattern);

)
listAl1Files (“*gui*”);

9.5.2 Wildcards

It was mentioned above that we can use wildcards in our file patterns. Table

9.12 shows the wildcards that TGE supports.

* The standard “matches all” wildcard. “* cs”

. This equates to the mod directory. For example, when “~/main.cs”
using the GPGT Lesson Kit, “~/*.cs” is the same as

“gpgt/*.cs”.

This file location relative wildcard can be interpreted as

“current directory of this file,” i.e., this equates to the “ /test.cs”
current directory of the script file it is used in.

9.5.3 Counting Files

We can count the number of files matching a specified pattern using the fol-

lowing function.

getFileCount(pattern);

9.5.4 Calculating File CRC

A CRC (cyclic redundancy code) is a useful thing to have if you need to ensure

that users are using the correct version of a file prior to starting the game.

Thus, TGE provides a function for calculating the CRC of a file:

getFileCRC(filename);

In a multiplayer scenario, the server and the client can compare CRCs, and if

a client has a file with the same name but a different CRC, then that client’s

file is either corrupted, modified, or of a different version than that found on

the server.

Game Setup Scripting

9.5.5 Filename Expansion

Frequently, it is useful to skip a lookup on a file and do a direct expansion of

the file from a filename using wildcards. This can be accomplished with the

following function.

expandFileName(filename) ;

The Slash (/) versus the Dot (.] versus the Tilde (~]

There are three special file path prefixes used in TorqueScript. The first of these

is the the slash (/), the second is the dot (.), and the third is the tilde (~).

A slash as the first part of a path tells the engine to start searching in the

root directory. The root directory for a TGE game is the directory in which the

first “main.cs” file is found.

A dot means to start looking in the current directory. That is, look in the

directory where the file that contains this script was found.

A tilde means to look in the mod paths. In our scripts, we can build up the

mod path by calling setModPath() and passing a path or semicolon-speci-

fied paths. All mod paths are children of root.

9.5.6 Filename Subelements

The file finding/expanding functions return strings that may contain a path, a

file prefix, and a file suffix. It is often necessary to examine just one of these

filename subelements. Fortunately, the authors of Torque foresaw this need.

Extracting File Path

To extract a file path from a filename, use the following method.

filePath(filename);

If the filename contains no path or is not valid, this function will return a null

string.

Extracting File Name

A file “name” is considered to be everything but the path; i.e., the prefix +

suffix. To extract a file name from a filename, use the following method.

fileName(filename);

This will remove the path, if one exists, and return the remainder of the string.

Chapter 9

r Filename
expansion is

context-based. So,

do not make the

mistake of trying to

use this function from

the console. For this

function and other

functions like it to

work, the function

requires context. A

file provides context

to the console while

it is parsing that file,

but when we open

the console and type

commands in the

command line, we are

working in a context-

less environment. Thus,

this function cannot

expand a filename to

match the context.

367

J. vc

EE

Part It!

368

Game Elements

Extracting Prefix

The prefix of a filename is the last part of a file’s name, before the dot (.).

For example, the prefix of the filename “test.png” would be “test”. File paths

are not part of a file’s prefix. To extract a file prefix from a filename, use the

following method.

fileBase(filename);

Extracting Suffix

The suffix of a filename is the last part of a file’s name, including and after the

dot {.). For example the suffix of the filename “test.png” would be “png”. To

extract a file suffix from a filename, use the following method.

fileExt(filename);

9.5.7 Before Reading or Writing

We're almost ready to start discussing the actual reading and writing of files,

but before we do, let’s discuss two more functions.

Is It a Valid File?

Before attempting to read or write a file, we should always verify that it exists

or is valid. TGE provides the following Boolean-returning function for this

purpose.

isFile(filename);

This function will return true if the file is a valid member of the file manag-

er’s list and false otherwise. Of course, writing to a file that does not exist

will create that file, including any subdirectories that may be required as part

of the filename’s full path.

Can I Write to It?

If we want to write to a file, we’d better check that it is writeable.

isWriteableFileName(filename);

Please note that this will return false if the file does not exist; thus, for
writes, we can be lazy and just check this, skipping the isFile() check.

Game Setup Scripting Chapter 9

9.5.8 Reading Files

So, we’ve talked about how to find our files and get some information about

them, but how do we read them? TGE provides a class called FileObject. We

can use this class in our scripts to both read and write files.

In order to read a file, we must do the following.

1. Open the file for reading.

2. Read a Jine from the file.

3. Repeat step 2 until we reach the end of the file or have completed our task.

4. Close the file.

The following function was extracted from a post and modified slightly.

//ts14();

function readFile(%filename) {

$file = new FileObject ();

if (%file.openForRead(%filename)) {

while(!%file-.isEOF()) {

$input = *file.readLine();

echo (%input) ;

}

} else {

%file.delete();

return false;

}

6file.close();

$file.delete();

return true;

}
readfile(expandFilename(“~/prefs.cs”));

In this example, we create a new instance of a FileObject and then use it

to open and to read the file. When we are done, we use it to close the file, and

then we delete the object. The key methods used are the following.

e openForRead(fileName). This method will attempt to open the files

specified by the string fileName for reading. If it is not successful, it will
return false.

e readLine(). This methods returns the next full line (terminated by a new

line) in the file. If no lines remain, a null string will be returned.

e isEOF(). This method checks to see if the end of the file has been reached

and returns true if it has.

369

Part Ill

370

Game Elements

e close(). This method closes the file. Do not forget to do this.

That is pretty much it. Very simple.

9.5.9 Writing Files

Writing files is only slightly more complicated than reading them. Before we

write to a file, we must answer one very important question: do we want to

overwrite the file or append it?

Overwriting Files

To overwrite a file, we do the following.

1. Open the file for writing.

2. Write to it.

3. Repeat step 2 until we are done.

4. Close the file.

function writeFile($filename , %data) {

%file = new FileObject ();

1f(! sfile.openforWrite(%filename)) {

$file.delete();

return false;

}
Sfile.writeLine(%$data);

Sfile.close();

Sfile.delete();

return true;

In this example, we create a new instance of a FileObject and then use it

to open and to write the file. When we are done, we use it to close the file,

and then we delete the object.

The key methods used are the following.

e openForWrite(fileName). This method will attempt to open the
file specified by the string fileName for writing. If the specified file does

not exist, it is created, but not yet added to the file manager list. If the file

already exists, it is cleared, and we start writing at the front of the file. If
the open fails, this method will return false.

e writeLine(). This method writes a string to the file and appends a new-

line character.

e close(). This method closes the file, just as it did for reading, but with
one exception. If we opened a new file, at this time the filename is added

to the file manager’s list. Only now can we read it.

Game Setup Scripting Chapter 9

Appending to Files

To append to an existing file, we do the following.

1. Open the file for appending.

2. Write to it.

3. Repeat step 2 until we are done.

4. Close the file.

function appendToFile(%filename , %data) {

file = new FileObject();

if(! sfile.openforAppend(%filename)) {

$file.delete();

return false;

}
Sfile.writeLine(%data);

%’file.close();

$file.delete();

return true;

In this example, we create a new instance of a FileObject and then use it

to open and to append to a file. When we are done, we use it to close the file,

and then we delete the object.

The key methods used are the following.

e openForAppend(fileName). This method will attempt to open the file

specified by the string fileName for appending. If the specified file does

not exist, it is created but not yet added to the file manager list. If the file

already exists, it is opened, and we start writing at the end of the file. If the

open fails, this method will return false.

e writeLine(). This method writes a string to the file and appends a new-

line character.

e close(). This method closes the file, just as it did for reading, but with
one exception. If we opened a new file, at this time, the filename is added

to the file manager’s list. Only now can we read it.

9.5.10 Maze Runner Lesson #17 (90 Percent
Step)—Level Loader

In this lesson, we will discuss the level-loader code. We will not be listing all

of the code here, as it is rather lengthy. Instead, we will describe how it works

and how the code is structured.

Please note that the level loader is responsible for loading and starting all

elements of the level. This includes the fireball-shooting block, which we have 371

Part lil

372

Game Elements

not completely covered yet. Specifically, we have not discussed the fireballs

themselves, nor have we spoken of the code that fires them. If you wish, you

may skip ahead to Lesson 420 (Section 11.4.3) to see how they work. Not

doing so will not affect the current lesson, but until we complete that lesson,

the level loader won’t start the fireball blocks correctly.

Copy Required Files

From the accompanying disk, please copy the file “\MazeRunner\Lesson_012\

teleporters.cs” into “\MazeRunner\prototype\server\scripts\MazeRunner”.

Now, edit the function onServerCreated() in the file “\MazeRunner\

prototype\server\game.cs” to look like the following (bold lines are new or

modified).

exec (“./MazeRunner/teleporters.cs”); // MazeRunner

exec (“./MazeRunner/levelloader.cs”); // MazeRunner

Levels versus Layers

In the following description, we will be using the words level and layer. A

level is comprised of one or more layers of game elements. A level may have

any number of layers.

Level Files

The premise of this level loader is quite simple. Our goal is to load a single

mission and then, at any time we wish, load the components that make up a

level. By using a level map and a level loader, we may define as many levels

as we want without needing to hand-create an entire mission and then load

the mission (which is generally slower than placing items by script for single-

player games).

The first thing we need to do is define the parts of a level file.

Level File Format

We want to be able to make levels with multiple elements and multiple layers.

To do this, the level file cannot be constrained to a fixed length. Instead, it

must be dynamic.

After some thought, J came up with the syntax for this file shown in Table

9.13.

That is it for the syntax. Now, let’s designate what letters mean in the

actual layer definitions (those 16 lines).

Game Setup Scripting Chapter 9

Table 9.13.

Line 0 This line is used to store the numeric ID of the level that follows this one. Level-file elements.

LAYER_UP This will increment the current elevation at which blocks and other

elements are being placed by 4 world units.

LAYER_DOWN This will decrement the current elevation at which blocks and other
elements are being placed by 4 world units.

LAYER_DEFINE | This indicates to the level loader that the next line in the file will

specify a layer type.

BLOCKS This indicates to the level loader that the next 16 lines will contain a

map that designates where blocks are placed.

OBSTACLES This indicates to the level loader that the next 16 lines will contain a

map that designates where obstacles (teleport stations and fireball
blocks) are placed.

PICKUPS This indicates to the level loader that the next 16 lines will contain a

map that designates where pickups (coins) are placed.

PLAYERDROPS | This indicates to the level loader that the next 16 lines will contain
a map that designates where the player will be dropped at the
beginning of the mission.

Tokens

Each layer definition is composed of 16 lines of 16 characters, meaning that

each layer definition may have up to 256 elements in it. Because we have a

multitude of things to place (and because we want to leave room for expan-

sion), we will be reusing letters (tokens) between layer types. Table 9.14 lists

what individual tokens mean in the various layer contexts.

oS eerie Table 9.14.

A-J These designate one of the level blocks we discussed in Definitions of tokens.
BLOCKS Lesson #5 (Section 6.5.6).

0-9 These are the fade blocks. The number specifies the
number of seconds until the block fades. We will discuss

how this fading works in Lesson #18 (Section 10.3.7).

X, Y, Z | One of these will produce a teleport station.

OBSTACLES
0-9 These are the fireball blocks, where each number is

a block firing in a specified direction. For example:
O—North, 1—NorthEast, ..., 7—East , 8—NorthEast, and
9 is random.

PICKUPS c A coin.

PLAYERDROPS P A player drop point. The player is dropped at the first

point found.
373

Part Ill

374

Game Elements

Level-Loader Mechanics

The mechanics of the loader are pretty straightforward. It will consume what-

ever file it has been told to load until it has placed all of the contents or until

it hits some kind of error in the level file.

Level-Loader Definition

So, we have some rules upon which to base our level building, and thus we

have rules upon which to base the design of the loader. Furthermore, we

know the loader must read the file until it is consumed, regardless of how

many layers are defined in the file. Let’s get started.

Go ahead and load up the “levelloader.cs” file in your favorite browser

and then follow along as we discuss it here.

Elevations and Level Increments

The first thing we do in our loader is define some global variables for tracking.

e SBaseElevation. Beginning elevation for every new level (not layer).

¢ SLevelIncrement. Level up/down step size.

¢ $CurrentElevation. Current elevation we are building at (current layer),

Classifying Tokens

We are dealing with a lot of different tokens. We will need to categorize these

tokens into groups to minimize our code size. Because we don’t want to waste

time doing multiple comparisons to determine if any one token is a teleporter,

a fireball block, etc., we need a way to reduce the effort required to catego-

rize tokens. The trick is to create an array where the index of the array is the

expected token and the value in the array gives us the information we need.

For example:

SBLOCKCLASS [A] = NORMAL;

SBLOCKCLASS[B] = NORMAL;

SBLOCKCLASS[(C] = NORMAL;

//

SBLOCKCLASS[0] = FADE;

SBLOCKCLASS[1] = FADE;

SBLOCKCLASS[2] = FADE;

//

In the above code, we’re saying that any token A..C will correspond to a nor-

mal block while 0..2 will be a fade block.

So, we don’t want to write the code like the following.

if((token S= A) || (S$token $= B) || (%token S= CC)) {

// Normal Block Code Here

}
else if ((%token $= 0

// Fade Block Code Here

Instead, we can write it like the following.

switch$(SBLOCKCLASS[%token]) {

case NORMAL:

// Normal Block Code Here

case FADE:

// Fade Block Code Here

As you can see, this code is not only more elegant but also significantly

faster than the multiple comparison case before (and that was with only 6 of

the 20 possible block cases shown).

buildLevel ()

We've prepared the globals and helper variables we’ll need; now let’s write

the loader function.

The buildLevel() function takes a single argument containing the

numeric ID of the level to load. The function assumes that all level files are

stored in the directory “\MazeRunner\prototype\data\Missions\LevelMaps”.

Given the number 0, the loader will attempt to open a file named “\Maze-

Runner\prototype\data\Missions\LevelMaps\levelNum0.txt”. If the level loader

successfully opens this file, the first thing it will do is read the first line, which

contains the numeric ID of the level that follows this one. If no next level is

defined, the loader fails out.

So far, nothing mysterious has been done, but the next bit of code may

Game Setup Scripting

) || (€ token $= 1) |] (Stoken $= 2

seem strange. For several lines, you will see bits of code like the following.

if(isObject(gameLevelGroup))

gameLevelGroup.delete();

MissionCleanup.add(new SimGroup(gameLevelGroup }

gameLevelGroup.

gameLevelGroup.

gameLevelGroup.

gameLevelGroup.

gameLevelGroup.

gameLevelGroup.

gameLevelGroup.

gameLevelGroup.

add (

add (

add (

add (

add (

add (

add (

add (

new

new

new

new

new

new

new

new

SimGroup (

SimGroup (

SimGroup (

SimGroup (

SimGroup (

SimGroup (

SimGroup (

SimGroup (

mazeBlocksGroup));

fadeGroup)

FireBallMarkersGroup)

TeleportStationGroupx)

TeleportStationGroupy)

TeleportStationGroupzZ)

TeleportStationEffectsGroup)

CoinsGroup)

);

Ve

)i

de

i

;

di

)) {

)?

Chapter 9

375

Part Ill

376

Game Elements

Remember that we are building our levels dynamically. As part of this

effort, we are destroying the prior level if it exists. Also, to make our lives

simple, we will be tracking all of our objects in named SimGroups. This is

ideal because much of the processing our game does is of an iterative nature,

and it is easy to iterate over a SimGroup.

So, the above statement and the remainder like it in the function are

merely removing the last level’s SimGroups (if they exist) and then creating

the following named SimGroups.

* gameLevelGroup. This is the big daddy of all level SimGroups. It will
contain all of our subsequent SimGroups for this level. Thus, deleting just
this group kills all the child groups and their contents.

¢ mazeBlocksGroup. All normal blocks are stored in this group.

¢ fadeGroup. All fadable blocks are stored here. Later, we will iterate over

this group to maintain the fadeblocks’ behaviors.

e fireBallMarkersGroup. All fireball blocks are stored here. Like the
fadeGroup, we iterate over this group to keep the fireball blocks firing.

¢ TeleportStationx. .TeleportStationZ. These three sets are used to

store the three types of teleporter. Teleport stations stored in the same

group will target each other.

* TeleportStationEffectsGroup. Although we have an onRemove()

method that deletes the p-zone and particle emitter node attached to a trig-

ger when the trigger is deleted, I prefer to store the IDs of these effects in a
SimGroup, too. That way, there is no question that they will get deleted on
level load (or on mission exit).

¢ CoinsGroup. This last group stores all coins (that have not been picked

up). We will use this later to determine when the level is complete and it is
time to load the next one.

Next, we will see the beginning of the level-loader’s main processing loop.

while(!%file.isEOF()) {

From this point on, the level loader will read in lines from the file until the file

is empty or an error occurs.

Upon first entering this loop, the function reads a line and checks to see

what task it represents: LAYER_UP, LAYER_DOWN, Or LAYER_DEFINE. For a

LAYER UP Or a LAYER DOWN, we increment/decrement and then go back to

the top of the loop (by using continue) to get the next task. If the task does

not match any known task type, the function aborts.

Eventually, the task we get will be a LAYER_DEFINE. This tells the loader

that the next line will be a LAYER TYPE. So, the level loader reads the next

Game Setup Scripting

line and decides which layer type it is: BLOCKS, OBSTACLES, PICKUPS, or

PLAYERDROPS. If it is none of these, the function fails out.

Assuming the function read a valid layer type, it will use another of

those system scripts supplied with the kit and load the next 16 lines into an

arrayObject (a scripted class I created so that we may create arrays that can be

passed between functions and methods)..

After reading in the next 16 lines (into our arrayObject), the level loader

will then pass this array to a specialized function that does the layout for that

level type.

¢ layOutBlocks(). This lays out normal blocks and fade blocks.

e layOutObstacles(). This lays out fireball blocks and teleport stations.

¢ layOutPickups (). This lays out coins.

¢ playerDrop(). This will drop the player into the level at a specified

point.

After the current layout pass, the loader goes back to the top of the file-reading

loop and continues until the end of the file (or error).

Eventually, the file will be empty, and we wil! drop out of the loop. At this

point in the code, you will see a function (in two places) that may not yet be

familiar to you.

if(fadeGroup.getCount())

fadeGroup.schedule(5000 , fadePass);

if(FireBallMarkersGroup.getCount())

FireBallMarkersGroup.schedule(5000 , firePass);

In both of the above statements, the script is telling the engine to schedule

an event to occur in 5000 milliseconds. The first event is the calling of the

method fadePass (). It will be called as follows.

fadeGroup.fadePass();

The second event is the calling of the method firePass(). It will be called

as follows.

FireBaliMarkersGroup.firePass();

Each of these statements will cause a special function (not yet covered) to

iterate over the specified SimGroup and to “do something” to each entry. We

will cover this in Lesson 418 (Section 10.3.7).

Chapter 9

377

Part Ill

378

Game Elements

layOutBlocks ()

We will talk about the first of the four layout functions, and then I will leave

you to examine the other three on your own.

This function has the responsibility for creating content in the world based

on the values in the arrayObject it has been passed.

To do its jobs, the function uses a nested loop and reads every token of

every line and parses these tokens by category (using the trick we discussed

at the beginning of this lesson) and then by specific type.

It is assumed that every token represents a world space of “4 4 4”. Thus,

the current position is incremented by “4 4 0” to keep us on the current

layer.

When a token is found that matches a known category, an object in that

category is created. Being smart, we named our files and datablocks in such

a way that we can merely append the token to a generic version of the file-

name or datablock name when loading a file or building an object from a

datablock.

Once this function has consumed all of the lines in the arrayObject, it

deletes the object.

Temporary Spawn Point

One side effect of destroying a level is that the player will fall into the lava

because there is no place to stand. So, to solve this problem, while the level

loads, we should create a place for the player to stand temporarily. This can

be accomplished by editing the file

“\MazeRunner\prototype\data\Missions\mazerunner. mis”

and adding the following to the end of the mission file (bold lines are new).

new TSStatic() {

position = “0 0 295”;

rotation = “1 0 0 0”;

scale = “111”;

shapeName = “~/data/MazeRunner/Shapes/MazeBlock/blockA.dts” ;

};

);

//--- OBJECT WRITE END ---

Additionally, to get the spawn to work properly, we need to move the spawn

point. So, in the same file, locate our spawn point and change the position to

the following.

Game Setup Scripting

new SimGroup(PlayerDropPoints) {

new SpawnSphere() {

position = “0 0 300”;

rotation = “1 0 0 0”;

scale = “1 1 1”;

dataBlock = “SpawnSphereMarker”;

radius = “1”;

sphereWeight “100%;

indoorWeight “100”;

outdoorWeight = “100”;

locked = “False”;

lockCount = “0”;

homingCount = “0”;

};

bi

Now, when we start the mission, the player will be high above the cauldron,

~ and on subsequent loads the avatar will be moved here temporarily.

Testing the Level Loader

At this point, you should be able to test the level loader. Simply start the GPGT

Lesson Kit, open the “Maze Runner” mission, open the console, and type

buildLevel(0);. Your player should be moved to the extra block we just

inserted for a few seconds, and then it should drop onto a new level.

9.6 Compiling and Executing Files

Any file containing a valid script can be compiled and/or executed. We have

the freedom to only compile a file, but executing a file implies that it will be

compiled if we have not already done so.

9.6.1 Compiling

We can compile a file without reloading it. This way we don’t override func-

tionality accidentally or in some other way corrupt our environment. A suc-

cessful recompile produces a new file with the same name plus the extension

“dso” appended.

In order to compile a file, we use the following syntax (Table 9.15).

compile(filename);

Please note that compile() will always return 1 if the file is of nonzero

length and it exists. Thus, at this time, the return value is not very useful.

Chapter 9

379

Part Ill

Table 9.15.

Compiling a file.

Table 9.16.

Executing a file.

380

Game Elements

compile This is the function name.

filename This is a string containing a complete or partial path and the name of

the file to be compiled. compile () can expand relative paths.

9.6.2 Executing
As was noted above, executing a file implies that we will recompile it (if nec-

essary) and then reload it. Reloading basically runs the contents of the file,

replaces any redefined functions with the new ones, and creates any data-

blocks defined in the file. The following syntax is described in Table 9.16.

exec(filename [, noCalls [, journalScript]]);

Please note that it is illegal to exec() zero-length (empty) files. So, if you

need one as a placeholder, put the following statement in the file.

return;

exec This is the function name.

filename This is a string containing a complete or partial path and the name

of the file to be compiled. exec () can expand relative paths.

If this Boolean value is t rue, it instructs the engine not to execute

noCalls any code found in the file. Only packages and functions are

reloaded. All functional code is skipped.

journalScript | Boolean value specifying whether this is a journal file or not.

9.7 Game Setup Scripting Summary

In this chapter, we learned about some of the classes and features that Torque

provides for setting up and maintaining a game.

We learned about the SimSet and SimGroup containers.

We then discussed how to create scripted objects using the ScriptObject

and ScriptGroup classes. We also learned how these special classes provide

namespace scoping and callbacks.

We learned about action maps and how to connect user inputs to game

actions and reactions. ,

Game Setup Scripting

Next, we discussed how the file subsystem operates (from the scripted

viewpoint) as well as how to locate files and to parse the components of a file

path and filename. We closed by learning how to read from, create, and write

to new files, as well as how to append to existing files.

Last, we discussed how to compile and execute script files.

Chapter 9

381

Chapter 10

Gameplay Scripting

This chapter gives an overview of the scripting tasks that are related to imple-

menting gameplay. It will familiarize you with the following specific topics.

e Callbacks. We need to understand what they are and what a small set of

them do in order to discuss some larger topics later.

¢ Event scheduling. As an event-driven simulation, our games often require
events to occur at some time in the future. The event-scheduling features
of TGE make this possible.

® Manipulating strings. TorqueScript deals with all data as strings (before

these strings are converted to their proper types). Here, we talk about the

many ways we can manipulate this string data.

¢ Scripted math. Another big part of making games is math. We’ll take a

little time to review the math features available via scripting.

¢ Dynamic scripting. We'll discuss how to write dynamic code; that is, we’ll

talk about how to assemble and execute scripts at run-time.

¢ Basic client-server communication. We’ll briefly discuss how basic client-

server communications are achieved.

10.4 Callbacks

For the purpose of this guide, a callback is any console method that is auto-

matically (or directly) called by the engine (or scripts) in response to some

event. These callbacks are part of what drives a game; that is, game events are

processed by the engine, firing callbacks, which subsequently trigger chains

of scripted events.

Having defined what a callback is, we are not going to carry on about why

we have them or how they work. Instead, we will discuss a few significant

callbacks and then move on. There is also an appendix that documents all of

the default TGE callbacks (see Appendix A).

10.1.1 onAdd() and onRemove ()

For now, you need only be familiar with eight callbacks. The first two of these

callbacks are the onAdd() and the onRemove () callbacks.

The onAdd() callback is called just after an object is instantiated. The

onRemove() callback is called just prior to the object being deleted.

383

Part Hl

fo

This was mentioned

before, but it is

very important to

remember that both

the datablock ID and

the object ID are

passed automatically

to callbacks when

they are called by the

engine, but if you call

them manually, you

may be responsible

for passing one or
both of these values
yourself. Reread the

sections on objects and

datablocks in Chapter 4, “Introduction to

Torque Script,” if this

is fuzzy.
384

Game Elements

The calling sequence may still be a bit foggy, so see the following code.

//ts10();

function myTestDatablock::onAdd(%theDB, %theObj) {

echo(“A new object: \cp\c2”, StheObj.getName(),

“\cQ was created with the datablock: \c2”,

StheDB.getName()) ;

}
function myTestDatablock::onRemove(%theDB, %theObj) {

echo(“Deleting: \cp\c2", %theObj.getName(),

“\cO created with the datablock: \cp\c2”,

StheDB.getName()) ;

}

datablock StaticShapeData(myTestDatablock) {

category = “LessonShapes”;

};

sobj = new StaticShape(testObject) {

datablock = “myTestDatablock”;

};

sobj.delete();

Running this sample produces the following output.

A new object: testObject was created with the datablock:

myTestDatablock

Deleting: testObject created with the datablock:

myTestDatablock

So, what happened? The (nearly) exact sequence is as follows.

1. An instance of StaticShape is created using the myTestDatablock datablock

and named testObject.

2. onAdd() is automatically called with two arguments, the ID of myTest-

Datablock and the ID of the newly created StaticShape.

3. The method delete() is called on the instance of StaticShape named

testObject.

4. Before the deletion occurs, the onRemove() callback is automatically

called with two arguments, the ID of myTestDatablock and the ID of the

to-be-deleted StaticShape.

Gameplay Scripting

10.1.2 onCollision ()

The next callback you need to know about is the onCollision() callback.

This callback is called whenever a collision between objects is registered by

the engine. The onCollision() callback takes several arguments, and an

instance of this callback could be defined as follows.

function PlayerData::onCollision(%colliderDB ,

$colliderObj ,

$collidedObj ,

vec ,

Sspeed) {

//...

Describing the exact details of how and when this callback is called is beyond

the scope of this volume. For now we’ll just restate that it is called when there

is a collision, and then we’ll describe the arguments in Table 10.1.

IPTtIO!

scolliderDB | This argument contains the datablock ID of the object that did the

colliding.

%colliderOb} | This argument contains the ID of the object that did the colliding.

%collidedObj | This argument contains the ID of the object that was collided with.

Svec This argument contains a three-element floating point vector

describing the direction and magnitude of the collision.

$speed This last argument is provided to ease our coding work. It contains

the magnitude of the prior vector, i.e., the velocity (or speed) of the

collision.

10.1.3 onWake () and onSleep ()

These two callbacks are associated with GUI controls. The onWake () callback

is called when a GUI control or its parent is made the current content of the

canvas. The onSleep() callback is called when the GUI control or its parent

is removed from the canvas. Alternately for dialogs, onWake () is called when

the dialog is pushed, and onSleep() is called when the dialog is popped.

This may not mean a great deal to you yet, but it will make more sense when

we get to Chapter 12, “Standard TGE GUI Controls.”

Chapter 10

Table 10.1.

Arguments for

onCollision().

385

Part Hl

386

Game Elements

10.1.4 create ()

There are some who would argue that this is not a callback, and I would

almost be willing to concede that point, except that this method is called as

the result of a scripted action. That script is part of the standard TGE release. It

is the World Editor scripts that call the create () method automatically when

we attempt to create a new instance of a class in the world.

Some folks may argue with me yet, because this “callback” is scoped to

object class names, not to datablocks.

This is not a valid argument, however. Yes, almost all callbacks are scoped

to datablocks, but there are some callbacks that are scoped to object instances

instead. This is one of those exceptions to the rule.

I repeat: this special method is needed for any GameBase child if we wish

to be able to add an instance of it from the World Editor Creator. The GPGT

Lesson Kit fully defines all the create () methods. If you would like to see

how they are written, do a search for the string “:: create”.

10.1.5 onEnterTrigger () and

onLeaveTrigger ()

We already discussed these callbacks in Chapter 8, “Mission Objects,” but just

to refresh your memory:

® onEnterTrigger () is called when a shape enters the bounds of a trigger,
and

® onLeaveTrigger() is called when a shape leaves the bounds of a

trigger.

In Chapter 8, we did discuss other callbacks associated with the trigger, but

we won’t be using them in the prototype for our game.

10.2 Event Scheduling

We have discussed callbacks, and thus we understand the concept of a method

being called due to an engine event, such as a collision, an object creation or

deletion, etc. However, what if we want to create our own event sequences? Is

there a way to do this? Yes; read on.

10.2.1 Motivation and Concepts

There will be times when we would like to schedule “something” to happen

at a future time. Furthermore, we might only want this something to occur if

a specific object exists. We might also want this something to execute stand-

Gameplay Scripting

alone like a function, or on an object (like a callback). Thinking ahead, we

might also want to be able to check if the event has executed or if it is still

pending. Knowing that it is pending, we may choose to cancel an event(s) we

previously issued. All of this we can do.

10.2.2 Scheduling Our Own Events

TGE provides both a function schedule () and a method schedule() for

scheduling events, allowing us to schedule standalone events (using the func-

tion) or events that execute on an object (using the method).

The schedule () Function

This form of schedule () is used to call a function at some future time. It has

the following syntax (Table 10.2).

seventID = schedule(timeInMS , objID || 0 , functionName,

argO, ... , argN);

Upon successfully scheduling an event, the schedule () function

returns a unique ID for the event.

timeInMS Time in milliseconds until this event will be executed.

ob JID For this argument, we can supply a handle to an object or we can
pass 0. If an object handle is passed and the object associated with
the handle is deleted prior to timeInMsS, the event will automatically

be canceled.

functionName | This is the unadorned name of the function to execute, e.g. “echo”

argO, ... , Optionally, we may supply extra arguments to the event. These

 argN arguments may be constants or strings.

We use this function as follows.

//ts15();
schedule(1000 , 0, echo, “Hello world!”);

After 1 second passes ...

Hello World!

Alternately, we could attach our event to an object.

Chapter 10

Table 10.2.

The schedule ()

method.

387

Part Il

Table 10.3.

The schedule ()

function.

388

Game Elements

//ts16();

%ob} = new ScriptObject(test);

schedule(1000 , %obj , echo, “Hello world!”);

$obj}.delete();

After 1 second passes... nothing happens, because the delete canceled the

event.

The schedule () Method

This form of schedule () is used to call a function at some future time. It has

the following syntax (Table 10.3).

seventID = objID.schedule(timeInMS , functionName,

arg0O, ... , argN);

eventID Upon successfully scheduling an event, the schedule () method

returns a unique ID for the event.

obj ID Because this version of schedule () is a console method, it must

be executed on a object, thus we use any acceptable form of an
object handle.

timeInMS Time in milliseconds until this event will be executed.

functionName | This is the unadorned name of the function to execute, e.g. “echo”.

argO, ... , Optionally, we may supply extra arguments to the event. These

argN arguments may be constants or strings.
We use this function as follows.

//ts17();

Sobj = new ScriptObject (test);

function test::doit(%this , val) {

echo (%$this.getName(), “ says Sval); “"

$o0bj].schedule(1000 , doit , “Hello world!”);

After 1 second passes, we see the following.

test says Hello World!

Gameplay Scripting Chapter 10

As with the function version, which watches an object handle, if we were to

delete the object, the event would be canceled.

//ts18();

Sob] = new ScriptObject(test);

%obj.schedule(1000 , doit , “Hello world!”);
sobj.delete();

After 1 second passes... once again nothing happens because the delete can-

celed the event.

10.2.3 Checking For and Cancelling
Pending Events

So far, we know how to schedule an event, but it can often happen that we

need to check if an event has executed prior to doing something new. Or, if

the event is pending, we may need to cancel it.

isEventPending ()

TGE provides a function to check for pending events. This function checks to

see if an event is still queued in the event queue. It returns true if the event

is found and false if not. The syntax is as follows (Table 10.4).

spending = isEventPending(eventID);

e Table 10.4.

spending As noted, this method returns a Boolean value indicating t rue (the Checking for pending
event is pending) or false (the event is not pending). events.

eventID This is an ID previously returned from either the schedule ()

function or method.

Event Times

If an event is in fact still pending, we can gather additional data about it,

including the time since it started (in milliseconds).

ssinceStartedMS = getTimeSinceStart(eventID);

We can also find out the time left until it executes (in milliseconds).

$remainingMS = getEventTimeLeft(eventID); 389

Part HI Game Elements

And we can find out the total duration for the schedule.

SdurationMS = getScheduleDuration(eventID);

The syntax element eventID is an ID previously returned from either the

schedule () function or method.

cancel ()

Events dependent on an object are automatically canceled if the object is

deleted; thus, if we know our event is tied to an object, we can just delete the

object. However, this may not always be suitable, and in fact often it is not.

Thus, TGE provides a cancel () function with the following syntax:

cancel(eventID);

The syntax element eventID is an ID previously returned from either the

schedule () function or method.

10.2.4 Event Scheduling and Accuracy

It is important to step back for a moment and ask the following question:

“Just how accurate is my event timing going to be, and do I care?” Regardless

of when an event is scheduled, it will not be executed until there is a tick.

Additionally, there are other factors that can affect timing, including engine

internals, network latency, etc. So the answer for the first part of the question

would be, “Not entirely accurate.” In fact, you may experience a small amount

of drift (positive or negative) in the actual time before an event occurs. This

is significant for very short-order events (less than 32 milliseconds), and very

long-order events that are cascaded (i.e., event A schedules event B, ...).

Thus, you must consider the second part of the question carefully. Overall, the

accuracy of the event-scheduling system is usually sufficient to handle most of

our needs, but you will sometimes find it is not. At that point, you may need

to write engine code instead of relying on event-driven scripts.

The following code demonstrates the timing variances that can occur for

scheduled events.

function accuracyCheck(%scheduledTime, %time , %repeats) {

SactualTime = getRealTime() - %scheduledTime;

echo (“Requested Execution Time: ” , %time ,

“os: Actual Execution Time:.” , %actualTime ,
us

“ :: Difference (ms): , sactualTime - %time);

390

Gameplay Scripting

if(%$repeats) {

srepeats = Srepeats - 1;

testscheduleAccuracy Stime ,%repeats);

}

}

function testScheduleAccuracy(%time , %repeats) {

Chapter 10

schedule(%Stime , 0 , accuracyCheck , getRealTime() , %time , %repeats);

}

Here is some sample output from a call to testScheduleAccuracy ().

//ts19();
testScheduleAccuracy(1

Requested Execution Time:

Difference (ms): ~4

Requested Execution Time:

Difference (ms): -4

Requested Execution Time:

Difference (ms): -4

Requested Execution Time:

:: Difference (ms): -4

Requested Execution Time:

:: Difference (ms): -4

Requested Execution Time:

Difference (ms): -4

Requested Execution Time:

Difference (ms): 12

Requested Execution Time:

Difference (ms): 12

Requested Execution Time:

Difference (ms): 12

Requested Execution Time:

Difference (ms): 12

Requested Execution Time:

Difference (ms): 12

10);

1 Actual

Actual

Actual

Actual

Actual

Actual

Actual

Actual

Actual

Actual

Actual

Rerun this a few times. Your results should vary.

Repeating an Event

It may not be obvious at first, but if you want to create an event that repeats,

you must reschedule that event. The simplest way to do this is by putting a

call to schedule () in the function that you are scheduling, or in a function

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

that the scheduled function calls. Here is a simple example.

Time:

Time:

Time:

Time:

Time:

Time:

Time:

Time:

Time:

Time:

Time:

13

13

13

13

13

391

Part III

It is generally

Safer to tie

scheduled events

to the existence of an

object. Otherwise, it is

easy to get runaway

schedules occurring in

the background. Over

time, these may eat a

lot of CPU time.

Table 10.5.

Manipulating words.

392

Game Elements

function repeatForever()

// do something

schedule(1000, O ,

until the engine stopped.

10.3 Manipulating Strings

{

repeatForever) ;

ot \In this example, we could either schedule repeatForever() or call it

J directly, and it would continue to be rescheduled every 1000 milliseconds

As noted in Chapter 4, “Introduction to TorqueScript,” all operands in Torque-

Script are treated as strings. Therefore, it would be good for us if there were

facilities for parsing and otherwise manipulating these strings.

TGE provides a good-sized list of console functions dedicated to string

manipulations ranging from the mundane to the complex. I’ll list them all

here and demonstrate the more tricky functions/concepts.

10.3.1 Words

In TorqueScript, every whitespace-separated element in a string is called a

word. For example, in the string “Torque Is Cool”, we have three words: word

0 is “Torque”, word 1 is “Is”, and word 2 is “Cool”. Table 10.5 shows the func-

tions for manipulating words.

firstWord(text)

CTitio4#n

Returns first word in string text.

getWord(text , index) Returns word at index in string text.

index 0 is first word and so on.

getWordCount(text) Returns count of all words in string text.

getWords(text , index

{ , endindex])

Returns all words in string text between
index and (optional) endindex. If

endindex is not supplied, end of string
is assumed.

removeWord(text , index) Removes the word at index in string

text. Also removes the whitespace
following the word located at index.

restWords(text) Returns all words in string text

excluding first word.

setWord(text , index , replace)

index with the string in replace. Replaces the word in string text at

Gameplay Scripting Chapter 10

//ts20();
Stest = “Torque cool!”;

echo(Stest , “ has ” , getWordCount(Stest) , “ words.”);

test = setWord(%test , 0, “Torque is is”);

echo(Stest , “ has ” , getWordCount(%test) , “ words.”);

S$test = removeWord(%test, 1);

echo(%Stest , “ has ” , getWordCount(%test) , “ words.”);

while (“” !S= Stest) {

echo(firstWord(%test));

stest = restWords(%test) ;

‘10.3.2 Tokens

Frequently when we parse files, we will read in strings that are actually a

series of tokens separated by some delimiter. Some common delimiters are:

wo. | ”"
poe of

TGE supplies a single function that can be used to pull these tokens out

of a string in an iterative fashion. The way this function works seems a little

mysterious at first, but is actually pretty straightforward. So, let’s define it,

then use it (Table 10.6).

Table 10.6.

nextToken (str , | This function returns a truncated version of the passed-in Pulling out tokens using
tokenVar , delim) | string str, where the part that has been truncated is equal delimiters.

to the first token along with the first instance of delim.

Furthermore, the function places the removed token into the
named variable tokenVar. Note that tokenVar does not

include the delimiter.

//ts21();
function printTokens(%StokenString) {

stmpTokens = %tokenString;

while(“” !$S= S$tmpTokens) {

stmpTokens = nextToken(%tmpTokens , “myToken” , “;”);

echo(%myToken);

}
printTokens(“This;is;a;sample;string;of;tokens;.”);

In this example, we’ve take a string of tokens separated by semicolons and

iteratively stripped them out of the string from left to right. The next Token ()

393

Part Ill

Table 10.7.

Working with records.

394

Game Elements

method places each token in a variable, which we specify, named %myToken.

After stripping out a token, the remainder of the string is returned by the

method. Because we’re actually manipulating the string as part of our pro-

cessing loop, it is a good idea to work with a copy of the string.

There is one more thing you need to know. We actually named the tem-

porary token variable “myToken”, and TGE was smart enough to know that

that means %myToken. However, TGE did this because nextToken() was

called from within a function. If you use nextToken () in a file that is being

executed outside the scope of a function, or if you use it directly in the console,

“myToken” will become the global variable SmyToken. Pretty smart, eh?

10.3.3 Records

So far, we have words and tokens. The next data-organizing methodology to

understand is records. A record is nothing more than a string that ends in a

newline character. Thus, if we have a string containing elements separated by

newlines, each element is considered to be a record. Records can have multi-

ple words and/or tokens. In fact, this is really a kind of special case where the

delimiter in our token string can only be the newline character “\n” (same as

the operator “NL”). Table 10.7 explains the functions used with records.

getRecord(text , index) Returns the record in string text at
index.

getRecordCount (text) Returns the number of records in string
text.

getRecords(text , index [,

endIndex])

Returns the records in string text

between index and endIndex (or end
of string if endIndex is not specified).

removeRecord(text , index) Removes the record in string text

located at index. Also removes newline

character following the record located at
index.

setRecord(text , index ,

replace)}

Replaces the record in string text at
index with the string replace.

//ts33();
function testRecords(%recordString) {

StmpRecord = %recordString;

echo(%tmpRecord, “\n");

for($count = 0; %count < getRecordCount(%tmpRecord);

Scount++) {

Gameplay Scripting Chapter 10

StheRecord = getRecord(%tmpRecord , %count);

echo(“Current record: “, %theRecord);

if (StheRecord $= “test”) {

echo (“\c3Replacing records...”);

StmpRecord = setRecord(%StmpRecord , %Scount ,

StheRecord NL “of” NL “records.”);

while (getRecordCount(%tmpRecord)) {

$concatRecordString = %concatRecordString SPC

getRecord(%StmpRecord , 0);

StmpRecord = removeRecord(%tmpRecord , 0);

}
echo(“\n”, %concatRecordString);

}

testRecords(“This” NL “is” NL “a” NL “test”);

10.3.4 Fields

The final data-organizing methodology to understand is fields. A field is noth-

ing more than a string that ends in a newline character or a TAB character.

Table 10.8 explains the functions used with fields.

Table 10.8.

getField(text , index) Returns the field in string text at index. | Working with fields.

getFieldCount(text) Returns the number of fields in string
text.

getFields(text , index [, Returns the fields in string text
endIndex]) between index and endIndex (or end

of string if endIndex is not specified).

removeField(text , index) Removes the field in string text
located at index. Also removes newline

character or TAB character following the
field located at index.

setField(text , index , replace) | Replaces the field in string text at
index with the string replace.

It would be wasteful to show the whole sample routine, so an abbreviated

version is shown below. It is nearly identical to the above records test with the

few exceptions shown.

395

Part III

Table 10.9.

Converting characters.

« Table 10.10.

Searching for strings and

characters.

396

Game Elements

//ts34();

function testFields(@fieldString) {

// ... Same as testRecords() except using field functions

echo (“\c3Replacing fields...”);

stmpField = setField (%tmpField , %count , %theField

: NL “of” TAB “fields.”);

// ... Same as testRecords() except using field functions

}

testFields(“This” TAB “is” NL “a” TAB “test”);

10.3.5 Conversion

strlwr(string) Converts all alpha characters in st ring to lowercase.

strupr(string) Converts all alpha characters in st ring to uppercase.

Alphabetic characters in a string can be converted from uppercase to lower-

case and vice versa (Table 10.9).

//ts35();
echo(strlwr(“YEAH these ARE”) SPC strupr (“pretty OBVIOUS.”));

10.3.6 Metrics

The function strien(string) returns the length of a string.

10.3.7 Searching and Replacing

TGE provides a few standard ways of searching for strings and characters

within strings. These searches are all case sensitive.

getSubStr(string , start , Returns a string composed of all the

numChars) characters in string beginning at start

and continuing for numChars or until the
end of the string, whichever comes first.

strchr(string , char) Returns a string composed of all the
characters in string beginning at the first

instance of char and continuing until the
end of the string. Returns null string if char

not found (case sensitive).

strpos(source , target [,

offset])

Chapter 10 Gameplay Scripting

Table 10.10 (continued).

Returns the location of the first instance

of string target in string source.
Optionally, a starting of fset may be

provided, telling the function to ignore all
characters before that point. If no match is
found, —1 is returned.

strreplace(string , from, to) Replaces all occurrences of the string from

with the string to in string and returns
this new string (case sensitive).

strstr(string , substr) Returns position of first occurrence of
substr in string. Returns —1 if not
found.

//ts36();

%testString = “TGE is cool. TGE is fun. TGE Rocks. Use TGE to make a game!”;

echo(StestString, “\n”);

// Get string length

$len = strlen(%testString) ;

echo(“\c3This string is ”, %len , “ characters long.”, “\n”);

// Count instances of TGE

$lastTGE = -1;

while(SfoundAt >= 0) {

$foundAt = strpos(%testString , “TGE” , %lastTGE + 1);

if (foundAt > -1) {

$lastTGE = %foundAt;

Scount++;

}
echo(“\c3It contains ”, %count,

// Replace all instances of TGE

“ instances of the substring TGE.”, “\n”);

echo(“\c3Replacing all instances of TGE...”, “\n”);

stestString2 = strReplace(%testString , “TGE”, “Torque Game Engine”);

echo(%testString2, “\n”);

// Only replace last instance of TGE

echo(“\c3Replacing last instance of TGE...”, “\n”);
$testString3 = getSubStr(stestString , 0, %lastTGE) “the Torque Game Engine” @

getSubStr(%testString , $lastTGE + 3, %len); 397

Part Ill

Table 10.11.

Making lexicographic

comparisons.

398

Game Elements

echo(%testString3, “\n”);

// Modify and print the last sentence.

echo(“\c3Modifying and printing last sentence only...”, “\n”);

S$testString4 = strchr(StestString , “U”) ;

$testString4 = strReplace(%testString4 , “a game” ,

“\cp\c3games\co that Rock”);

echo(%testString4, “\n”);

10.3.8 Comparisons

We have a means of comparing arithmetic values (1, 2, 3, ...), and we have

the string comparison operator $=, but there are no string operators corre-

sponding to the arithmetic operators > and <. Thus, TGE provides two func-

tions to accomplish this work. The first is case sensitive, while the second is

not (see Table 10.11).

stxrcemp(stringl , Does case-sensitive lexicographic comparison of string1l

string2) | andstring2.

Returns the following.

-1 if string1 comes before string2 in alphabetical order.

0 if string] is equivalent to string2.

1 if string1 comes after string2 in alphabetical order.

stricmp(stringl , | Does case-insensitive lexicographic comparison of stringl
string2) | and string2.

Returns the following.

-1 if string1 comes before st ring2 in alphabetical order.

Oif string] is equivalent to string2.

1 if stringl comes after st ring2 in alphabetical order.

//ts37();

echo (“\c3Lexicographic comparisons are not the same as

arithmetic comparisons...”);

echo(“100 - 10 == 90, but stremp(\”100\" , \“10\") ==” ,

stremp(“100” , “10”));

echo(“\n”, “\c3Don\’t forget about case-sensitivity...”);

echo (“stremp(\“ABC\” , \“abc\”) == ” , stremp(“ABC” ,
“abc”) , , but aut) ;

echo (“stricmp(\“ABC\” , \“abc\”) ==." , stricmp(“ABC” ,
“abc”) ;

Gameplay Scripting

10.3.9 Trimming and Stripping

It will often be necessary to clean up strings before displaying or storing them. To

enable this task, TGE supplies some standard utility functions (Table 10.12).

ltrim(string) Returns string with all leading whitespace
removed.

rtrim({ string) Returns string with all trailing whitespace

removed.

stripChars(string , chars) Returns string with all characters in string
chars removed.

stripMLControlChars(string) Returns string with all TorqueML

characters removed.

stripTrailingSpaces(string) Returns string with all trailing spaces and
underscores removed.

trim(string) Returns string with both trailing and
leading whitespace removed.

//ts838();
StoClean = “<tab:60> I’m,<spush><font: arial: 8> ” @

“all, clean, <spop>”;

echo (“\c3Cleaning up an ugly string...”);

echo ($toClean) ;

echo(“\n”, “\c3Remove Mark-up language...”);

$toClean = stripMLControlChars(%toClean);

echo ($toClean);

echo(“\n”, “\c3Remove leading and trailing spaces...”);

S$toClean = trim(%toClean);

echo (S$toClean) ;

echo(“\n”, “\c3Remove commas...”);

stoClean = stripChars(%toClean , “,”);

echo (%toClean) ;

echo(“\n”, “\c3Get rid of underscores...”);

S$toClean = stripTrailingSpaces(%toClean);

echo (%toClean) ;

Chapter 10

Cleaning up Strings.

399

Part Ill

400

Game Elements

10.4 Scripted Math

TGE provides a rich set of console math functions. The majority of these func-

tions are centered around 3D mathematics, but there are a few other catego-

ries as well. All of these functions are documented in the “Console Functions”

appendix. However, we will take a brief tour of these functions so you know

what is available to you.

10.4.1 Floating-Point Arithmetic

All the arithmetic functions take floating-point values and return floating-point

results, but they can be used for integer mathematics, too (Table 10.13).

//ts39();

echo(“|-5| == ”%, mAbs(-5), “\n”);

echo(“Next greatest integer from 4.3 == ”, mCeil(4.3),

“\n”);
echo(“Next smallest integer from 4.3 == ”, mFloor(4.3),

“\n”);
echo(“2 raised to the power of 3.14159 == ”, mPow(2 ,

3.14159), “\n”);

echo(“Square root of 2 == ”, mSqrt(2), “\n”);

10.4.2 Trigonometric Functions

We use trigonometric functions frequently to solve problems in the realm of

3D games; thus, TGE has provided a complete set of these functions to be

used in TorqueScript (Table 10.14).

10.4.3 Vectors

In addition to trigonometric calculations, we will frequently be calculating

vector results to move game objects, check for intersections, and various other

tasks. A good set of vector functions simplifies this work (Table 10.15).

10.4.4 Matrices

Hopefully, you won’t find yourself needing to do too many matrix calcula-

tions, but if you do, TGE provides some functions (Table 10.16).

Most of these have obvious uses, but MatrixMulPoint() may seem a

bit mysterious. This can be used to translate a point by a transform. Having

this operation available makes it possible to check for collision between an-

object’s scaled objectBox and other objects like the terrain. In fact, this exact

Gameplay Scripting Chapter 10

problem was solved in Tribes 2 using MatrixMulPoint(). The gist of the

solution went something like the following.

// Pseudocode for scaled objectBox vs. terrain penetration

// 1. Obtain objectBox for shape and scale both vectors

// appropriately to match object’s scale.

SOb}]Box = %obj.getObjectBox ();

// ... Go scaling here

// 2. Create array of eight points containing untranslated

// position of objectBox bounds.

S$transform = %obj.getTransform();

// 3. Acquire object’s transform. Iterate over array and use

// ‘MatrixMulPoint()’ to calculate translated position of vertices.

for (%count = 0; %count < 8; %counttt) {

*newBoundPos [count] = matrixMulPoint(%transform,

%oldBoundPos[%count]);

)

// 4. Iterate over new bounds points using rayCast to check

// for collision between bounds and terrain.

collision = 0;

for (count = 0; Scount < 7; %Scount ++) {

$obj = containerRayCast (

%oldBoundPos[%count] ,

SnewBoundPos(%count) ,

STypeMasks::TerrainObjectType ,

0);

%collision |= %obj;

}

// 5. If Scollision is not zero, a collision occurred.

if (%collision)

echo (“Oops, got a collision!”);

10.4.5 Quadratics and Cubics

If you’re not a mathematician, these functions may sound a bit spooky, but if

you dredge up your old algebra and calculus notes, you’]l recall that they are

simply the following.

¢ Quadratic. Second-order polynomial of the form: ax? + bx +c = 0. Warning:

This function produces the inverse of the solution (see example below).

¢ Cubic. Third-order polynomial of the form: ax?+bx*+cx+d = 0. This
function works as expected. 401

Part Il Game Elements

Table 10.13. : per

Arithmetic functions. mAbs (operand) Returns the absolute (nonnegative) value of operand.

mCeil(operand) Returns the next greatest integer (as a float) starting at

operand and rounding up: mCeil (4.5) returns 5.0.

mFloor(operand) Returns the next smallest integer (as a float) starting at
‘ operand and rounding down: mFloor (4.5) returns 4.0.

mLog(operand) Returns the natural log of operand.

mPow(operandA , Returns the value operandA * operandB; i.e,
operandB) operanda raised to the power of operanadB.

mSqrt(operand) Returns the square root of operand.

Table 10.14.

Trigonometric functions. mAcos(operand) Returns the inverse cosine of operand.

mASin(operand) Returns the inverse sine of operand.

mAtan(operand) Returns the inverse tangent of operand.

mCos(operand) Returns the cosine of operand.

mDegToRad{ operand) Converts operand from degrees to radians.

mRadToDeg(operand) Converts operand from radians to degrees.

mSin(operand) Returns the sine of operand.

mTan(operand) Returns the tangent of operand.

Table 10.15.

Vector functions. VectorAdd(vectl , vect2) Adds vect1 and vect2.

VectorCross(vectl , vect2) | Calculates cross product of vect1 and vect2.

VectorDist(vectl , vect2) Calculates distance between points specified by
vectl and vect2.

: VectorDot(vectl , vect2) Retums scalar dot product of vect1 and vect2.

VectorLen(vect) Returns length of vector vect.

VectorNormalize(vect) Returns unit-length version of vect.

VectorOrthoBasis(“x y z Returns a 3 x3 matrix containing the
angle”) | orthogonal basis of the vector described by the

axis-angle representation <x y z> angle.

VectorScale(vect , scalar) | Scales the vector vect by the amount scalar.

VectorSub(vectl , vect2) Subtracts vect2 from vectl.

402

Gameplay Scripting

MatrixCreate(Pos , Rot) Creates a 3 x3 matrix from the three-element

floating-point position vector Pos and the four-
element floating-point axis-angle vector Rot.

MatrixCreateFromEuler (“Ax Creates a matrix from the Euler angles “Ax

Ay Az”) Ay Az”.

MatrixMulPoint(transform , Multiplies the three-element floating-point

point) point vector by the standard seven-element

floating-point transform.

MatrixMultiply(Left , Right) | Multiplies the 3x3 matrices Left and Right.

mSolveQuadratic(a,b,c) Solve for x0, x1 in second-order polynomial

equation with factors a, b, c.

Warning: x0 and x1 are inverted.

mSolveCubic(a,b,c,d) Solve for x0, x1, x2 in third-order polynomial

equation with factors a, b, c, d.

The functions in Table 10.17 return a vector of values in the form “sol x0

xl... xn”, where sol is the number of solutions and xO ... xn are the

values of those solutions.

The number of solutions, sol, should be 2 for a quadratic and 3 for a

cubic or else the calculation has failed. A failure will occur (sol == 0) if

there is no solution to the equation you are trying to solve. This always means

that you have entered factors for an equation of the form ax?+bx+c #0 or

ax? + bx*+cx+d!#0. These functions can only solve for equations that result

in 0. xO and x1 are the factored values for x. See the examples below for

clarification.

// All samples below drawn from 1728 Software Systems

// Sample Calculations: http://www.1728.com/.

// Cool calculators and converters; check it out.

// Quadratic Test -

// (x + 2) (x + 3) = 0 => x*2 + 5x + 6=0

echo(“Solutions: “, mSolveQuadratic(1,5, 6));

// Produces: 2 2 3 meaning there are two solutions,

// 2 and 3, but it is easy to see that we should have

// received 2 -2 -3. Be aware of this bug.

Chapter 10

Table 10.16.

Matrix functions.

Table 10.17.

Quadratic and cubic

functions.

403

Part Ill

404

Game Elements

echo (“xX == “ , mSolveQuadratic(2 , 10 , -100));

// Cubic Test:

// (x - 4) (& + 3) (x - 1) = 0 => 2x*3 - 4x*2 - 22x + 24 = 0

echo (“Solutions: “, mSolveCubic(2 , -4 , -22 , 24));

// Produces: 3 -3 1 4 which matches the factored solution

// to the cubic ‘above.

10.4.6 Miscellaneous

Centroids

A concept we deal with frequently is that of the center, or centroid, of an

object or a space. It will often occur that we know the bounds of a space and

want the exact center of that space. The method getBoxCenter(Box) does

that for us. It takes a single string containing two three-element floating-point

vectors representing the outer bounds of a (possibly irregular) rectangular

solid region and returns a three-element floating-point vector representing the

center of that rectangular solid.

//ts22();

cube = “~-1.0 -1.0 -1.0 1.01.0 1.07;

echo{ getBoxCenter{ %$cube));

Random Numbers

You will, almost invariably, need random numbers at some time in the design

of your game. Knowing this, the authors of TGE have provided some methods

to produce them.

Initializing the Random Number Generator

You don’t necessarily need to initialize the random number generator, but if

you want to be able to repeat your random results (e.g. you’re doing some

debugging and want the same random sequence every time), simply set the

seed to the same value before starting the sequence (Table 10.18).

You can also retrieve the seed value, prior to your sequence, in case you

need to plug it in later.

Getting Random Values

There is only one function supplied for getting random values, but it can be

called in a variety of ways (Table 10.19).

Gameplay Scripting Chapter 10

Table 10.18.

setRandomSeed(seed) Sets random seed to seed. Initializing the random
number generator.

getRandomSeed () Returns current seed

getRandom() Returns a random value in the range [0.0, 1.0]. Getting random numbers.

getRandom(max) Returns a random value in the range [0.0 , max J.

getRandom(min , max) Returns a random value in the range [min , max].

//ts23();

seed = getRandomSeed();

for ($count = 0 ; %count < 100 ; %count++) {

ex[%count] = getRandom(%count);

setRandomSeed(%seed);

for ($count = 0 ; %count < 100 ; %countt+) {

sy[scount] = getRandom(%count);

}

Smismatches = 0;

for ($count = 0 ; $count < 100 ; %Scount++) {

if(6x[%Scount] != %y[%count]) {

error(“Failed to reproduce same sequence of random numbers!”);

error (“Seed:” SPC Sseed);

error (“Count:” SPC %count);

error (%x[%count] SPC “!=” SPC %y[%count]);

smismatchestt;

}
echo(“There were ”, %mismatches,

“ mismatches.”);

Floating-Point Manipulation

On occasion, when you’re doing a floating-point calculation, it would be nice

if you could force the result to have a fixed number of decimal places. TGE

provides the function mFloatLength(operand, numDecimals) that

forces a floating-point value to have a specified number of decimal places. 405

Part Il

In the code on this

page, you will see a

call to forEach ()

This is not a standard

function, but rather

one of several utility

functions that has

been provided

with the GPGT

Lesson Kit as well as

separately on the

accompanying disk.

Please see Appendix

A.7, “Scripted Systems
Quick Reference,”

under “GPGT Utilities”

to learn more about

this utility method and

the others that have
been supplied with

this book.

406

Game Elements

Furthermore, TGE will round the last place up if the actual value extends

beyond the specified range and if the next decimal place is greater than or

equal to 5.

//ts24();
echo(mFloatLength(1.196 , 2));

echo(mFloatLength(1.196 , 10));

10.4.7 Maze Runner Lesson #18 (90 Percent

Step)—Game Events

In this lesson, we will examine the scripts used to fade blocks in and out, and

we will examine the functions used to shoot fireballs on a regular basis. Now

that we have covered callbacks, scheduling, string manipulation, and scripted

math, we should be ready to examine how these gameplay scripts work.

Please note: This lesson depends on Lesson #4 (Section 6.4.4).

Fade Blocks

There are three blocks of code we are interested in for the fade blocks.

The first of these is in the file “\MazeRunner\starter.fps\server\scripts\

MazeRunner\levelloader.cs”.

At the end of the function BuildLevel (), there is a little snippet of code

that checks to see if there are any fade blocks in the fadeGroup SimGroup. If

there are, the loader schedules a fadePass () in 5000 milliseconds.

if(fadeGroup.getCount())

fadeGroup.schedule(5000 , fadePass);

fadePass ()

This function has the task of coming back every $stepTime (1000) millisec-

onds and updating all of the fade blocks. The motivation for updating all the

\ blocks simultaneously is that it gives us greater control over the behavior

J of the blocks than if each block scheduled its own maintenance. Also, by

maintaining a single entry and exit point, we only use one schedule, thus

reducing overhead.

function SimSet::fadePass(%StheSet) {

StheSet.forEach(fadeStep , true);

StheSet.schedule(SstepTime , fadePass);

}

As can be seen, this function merely iterates over the blocks in the set and

runs fadeStep() on each of them.

Gameplay Scripting

fadeStep ()

This function has the responsibility for advancing the fade status of an indi-

vidual fade block by one time period. A fade block can be in one of three

States.

® waitToFadeOut. The block is waiting to begin a fade.

¢ waitToFadelIn. The block is faded out and waiting to begin fading in.

¢ wait. The block is in a dead cycle waiting for all other blocks to complete

the current fade cycle.

A fade cycle is always 10 seconds long (as implemented in “fadeblocks.cs”).

During a single fade cycle, every single fade block will fade out, fade in, and

wait for its peers to finish their fade cycle.

By using this method instead of allowing blocks to fade in, fade out, fade

in, ad infinitum, without synchronizing, we avoid chaos. The game would be

no fun if the blocks faded in and out chaotically. But, because we can rely on

a cycle always taking 10 seconds and then repeating itself, the player can plan

ahead after observing a cycle or two.

Enough talking. Let’s look at the code.

function StaticShape::fadeStep(StheBlock) {

StheBlock.timer = %theBlock.timer - $stepTime;

// Check for flip-time

if(%theBlock.timer <= 0) {

switchS (StheBlock.action) {

case “waitToFadeOut”:

$theBlock.timer = SbasePauseTime;

StheBlock.startFade($fadeTime , 0, true);

%theBlock.schedule($fadeTime , setHidden , true);

StheBlock.action = “waitToFadelIn”;

case “waltToFadelIn”:

StheBlock.timer = SbasePauseTime;

theBlock.setHidden(false);

$theBlock.startFade(S$fadeTime , 0, false);

StheBlock.action = “wait”;

case “wait”:

$theBlock.timer = %Obj].maxTime;

StheBlock.action = “waitToFadeOut”;

Chapter 10

407

Part Ill Game Elements

As we can see, individual blocks have an internal timer containing some pre-

defined value. When that timer gets down to (or below) zero, it is time to

change the block’s state and do some work.

Initially, all blocks will have the following values.

® timer. This value will be between 1000 and 10,000 milliseconds.

® maxTime. This value will be the same as timer. The value in this field is

never changed after the block is implemented.

* action. All blocks start out executing the action waitToFadeOut.

Now, if we restrict our discussion to just one block and assume that the block

has a timer and maxTime of 1000 milliseconds, over time, we will see the

behavior described in Table 10.19.

Action(s)

Table 10.19. : Pi Rew RST

Fade behavior of one 0 ° timer = timer — 1000 (0 <= 0 continue executing) (block is visible).
block. ¢ action == waitToFadedut.

e Block starts to fade out.

e Block schedules a hide.

* action = waitToFadelIn.

e timer = 10000.

1000 * timer = timer — 1000 (9000 > 0 skip) (block is invisible).

2000 e timer = timer — 1000 (8000 > 0 skip) (block is invisible).

3000 * timer = timer — 1000 (7000 > 0 skip) (block is invisible).

4000 ¢ timer = timer — 1000 (6000 > 0 skip) (block is invisible).

5000 * timer = timer — 1000 (5000 > 0 skip) (block is invisible).

6000 ¢ timer = timer — 1000 (4000 > 0 skip) (block is invisible).

7000 * timer = timer — 1000 (3000 > 0 skip) (block is invisible).

8000 * timer = timer — 1000 (2000 > 0 skip) (block is invisible).

9000 e timer = timer ~— 1000 (1000 > 0 skip) (block is invisible).

10000 e timer = timer — 1000 (0 <= 0 continue executing) (block is invisible).

e action == waitToFadelIn.

e Block unhides.

e Block starts to fade in.

® action = wait.

e timer = 1000.

11000 * timer = timer — 1000 (0 <= 0 continue executing) (block is visible).

e action == wait. .

¢ timer = 1000.
 Sequence repeats.
 408

Gameplay Scripting Chapter 10

The important thing to note about this behavior is that the fade blocks

support up to ten blocks with incrementing (by 1000 milliseconds) fade times

to be placed in order. Subsequently, these blocks will fade out in order. Then,

one second after the last block fades out, the first block will start to fade back

in. Thus, the fade in and out ts deterministic and cyclic, allowing a player to

observe a pattern and to memorize it.

Fireballs

There are three blocks of code we are interested in for the fireball blocks.

The first of these is in the file “\MazeRunner\starter.fps\server\scripts\Maze-

Runner\levelloader.cs”.

At the end of the function BuildLevel(), there is a little snippet of

code that checks to see if there are any fireball blocks in the FireBallMarkers-

Group SimGroup. If there are, the loader schedules a firePass() in 1500

milliseconds,

if(FireBallMarkersGroup.getCount())

FireBallMarkersGroup.schedule(1500 , firePass);

firePass()

This function has the task of coming back every $stepTime (1000) millisec-

onds and checking each fireball block to see if that fireball block should fire a

new fireball. Again, controlling fireballs this way (as with fade blocks) allows

us to use a single schedule () event to handle all of our fireball blocks. This

is easy to understand and efficient.

function SimSet::firePass(%theSet) {

StheSet.forEach(doFire , true };

StheSet.schedule($fireTime , doFire);

doFire()

Again, we have created a function that will operate on individual blocks to

enact each block’s action if it is time to do so. Here is a summarized listing

of the function.

function StaticShape::doFire(%Smarker) {

if(isObject($marker.bullet)) return;

// Handle random fire marker case

6firePath = (smarker.type == 9) ? getRandom(0, 9)

% ker. t ; marker.type 409

Part {II

410

Game Elements

switch({ %firePath) {

//

// NORTH

//

case 0:

smarker.shootFireBall(FireBallProjectile , “0 1 0” , 20);

// ... Similar code for case 1... 7

//

// DOWN

//

case 8:

smarker.shootFireBall({ FireBallProjectile , “O 0 -1” , 20);

}

We have not examined the shoot FireBall() method, but when this method

executes, it will create a projectile and store the JD of that projectile in the

block’s bullet field. When a projectile strikes an object, the projectile will

explode and then self-delete.

So, our doFire() method first checks to see if this block has a bullet by

seeing if the value in the bullet field is still an object. If it is, then we do not

yet need to fire another bullet, and the method exits.

If there is no current bullet, the method will next check to see if this is a

random block. In the case that this block shoots in a random direction, it will

get a random value between 0 and 8 and then continue.

Having selected a firing direction (or going with the fixed direction)
we now enter a long case statement that shoots a new fireball by calling

shootFireBall({) and passing in the following information (in this order).

¢ Projectile datablock. This is the projectile to shoot.

¢ Direction. This is the direction to shoot in.

e Velocity. This is the velocity we want the fireball to move with.

Please note, we will examine the method shootFireball() in Lesson #20

(Section 11.4.3).

10.5 Dynamic Scripting

This topic isn’t a real mind blower, but it is something to remember that you

have in your arsenal of TorqueScript options. —

Gameplay Scripting

First, remember that we are working within an interpreter. Furthermore,

you should understand that code is evaluated during execution—not before-

hand like in C or Java. This means that we can use certain parts of Torque-

Script’s syntax to build up powerful and flexible scripts that morph over time.

I call this dynamic scripting.

10.5.1 Square Brackets [|

In Chapter 4, “Introduction to TorqueScript,” we discussed the fact that Torque

uses [] to build up strings as follows.

//ts25();

$var(0}] = 10;

echo (%vaxr[0]);

// same as

echo (%$var0);

The interpreter evaluates statements with square brackets, removing the brack-

ets and replacing our original string with a more compact form. In essence, the

square brackets are concatenation operators. Using them, we can concatenate

two (or more) strings on the fly, building up a new variable name. Recall that,

in the case of multi-dimensional arrays, not only are the elements inbetween

the brackets concatenated, but all commas (,) are replaced with underscores

(_}. Consider the following code snippets.

Sa=1;

Sb=m;

Sc=n;

Sx[$a,$b,$c]} = 10;

echo($xl_mn); // Prints 10

In this example, we constructed a new name from the composite of the con-

tents of several variables. Notice that the engine inserts “_” for the comma (,)

separators.

Next, let’s try including the dot {.) operator.

$x.[$a,$b,$c] = 10; // Gives syntax error

In this example, we try to combine both the dot (.) operator and square brack-

ets, but TGE does not allow square brackets to follow a dot (.) directly.

Let’s get a bit more creative. . ,

Chapter 10

411

Part Ill

412

Game Elements

$x. [$a,$b,$c] = 10; // works, but gets ‘lost’ somehow

echo($x._[$a,$b,$c]); // hmmm... nothing

echo($x. 1 mon); // darn! nothing again

OK, that looked like it should work, but when we tried to print our values using

the exact copy and what should have been an equivalent, neither worked.

Why? Well, the dot operator only works on objects. We fooled TGE into think-

ing we had an object, but when it did not find an ID in $x, the remainder of

the operation went into the wastebasket.

Fine, so let’s try this with an object.

Sx = new simObject ();

$x. [Sa,$b,$c] = 10; // works and is retained

echo($x. [$a,$b,$c]); // Yeah!
echo($x._l_ min); // Sweet!

Excellent. Now, we know some ways of creating compound names dynami-

cally on both variables and objects. So, how do we put this to use?

10.5.2 Precedence Operators | |

Square brackets alone can’t do it all. Sometimes, we need to use the prece-

dence operators to force the engine to build our variables first. In particular,

we are not allowed to follow a closing square bracket with an open curly

bracket. Consider the following code.

//ts27();

sanObject = “ScriptObject”;

sob) = new SanObject();

if(isObject(%obj))

echo(“It is an object. Congratulations!”);

else

echo(“It is NOT an object. Try again...”);

This just won’t work. The interpreter doesn’t know that it needs to expand the

contents of sanObject first. So what about the following?

//ts28();
S$anObject = “ScriptObject”;

Sobj = new [%anObject] ();

if(isObject(%obj))

echo(“It is an object. Congratulations!”);

Gameplay Scripting

else

echo(“It is NOT an object. Try again...”);

This doesn’t work either. It violates the syntax rules for the interpreter. The

actual solution is to use the precedence operators.

//ts29();

SanObject = “ScriptObject”;

0b) = new (%anObject) ();

if(isObject(%obj))

echo(“It is an object. Congratulations! ”);

else

echo(“It is NOT an object. Try again...”);

Another useful example occurs when we want to dynamically build an object’s

name. For example if we had three GUI controls named tile top, tile_

middle, and tile bottom, we could access fields or methods of these con-

trols as follows.

sname[2] = “top”;

name[1l] = “middle”;

sname(0] = “bottom”;

for(count = 0; %$count < 3; %Scount ++) {

Sid = (tile @ “_” @ Sname[%count]).getID();

echo(“Tile ”, %$name[%count], “ has ID ”, %id);

10.5.3 eval ()

We still haven’t dealt with creating function names on the fly. You may recall

in our discussion of ScriptObjects (Section 9.3.2) when I said it is nice to

be able to use regularly formatted (versus specialized) names for our func-

tions; 1.e., it’s better to always call printArea() vs. printCircleArea(),

printSquareArea(), etc. The reason we like this is because it reasonably

leads us in the direction of building our function names on the fly from known,

regular parts.

So, to solve the final part of this puzzle, we need to use a special func-

tion provided by TGE: eval (). The function eval { scriptString) will

execute any valid script contained in the string scriptString.

This function will execute a string as if it were a script. With the use of

TorqueScript’s various string-building tools, we can build any function name,

variable name, or string of script we please. Then we simply eval () it.

Chapter 10

413

a

Part Ill

414

Game Elements

//€830();

stest = 10;

$printTest = “echo(\“” @ Stest @ “\")7%;

echo (“eval(“, %printTest, “) produces -->”);

eval(%printTest);

eval () can be used to create and modify both local and global variables:

//ts31Q);

$makeVarTest = “%newVar = 100;”;

echo (“evaluating script --> “, %makeVarTest);

eval(%makeVarTest);

echo (“$newVar == “, %SnewVar);

10.5.4 call ()

There is one more way of executing functions dynamically in script. This only

supports function-style calling, not method-style calling. It isn’t as much fun as

eval (), but it is very straightforward and useful in a great number of cases.

TGE provides a function named call(). call (funcname, [arg0O, ...,

argN]) executes the function named in the string funcName and passes the

function any arguments provided in argO, ..., argN.

//ts32();

StmpVal = 100;

call(“echo” , “S$”, %StmpVal , “ for TGE is a good price,

Yes?”);

10.6 Basic Client-Server Communications

Although you can, in practice, ignore the client-server divide in the design of a

single-player game, if you do and if you try to take that game to a multiplayer

environment, you may find yourself reworking great gobs of code.

For example, it is easy in a single-player game to write scripts called by

the action maps that manipulate server objects and variables. In the follow-

ing example, we use the key stroke CTRL+W to make the current player

play a hand-waving animation. All of this “bad” code might be placed in the

“default.bind.cs” file.

Gameplay Scripting Chapter 10

// Bad Implementation of a Wave!!!

moveMap.bind(keyboard, “ctrl w”, celebrationWave) ;

//

function celebrationWave(%val) {

if (%$val)

$Game::Player.setActionThread (“celWave”) ; Tags are a feature

} that Torque uses
to save networking

So, why is the above code bad? Let’s break it down. bandwidth. Basically,
a tagged string is

e The code uses a variable $Game: : Player which we are assuming has the stored locally {by the

server ID of the player in it. This has the following problems. first sender| and given
a unique numeric ID.

Then, the first time

‘the sender transmits

« The implication of this variable is that there is only one player, which this string to anew

breaks down as soon as there is another player in the game. receiver, it informs
. . . . the receiver that the

e There is a function celebrationWave() associated with CTRL+ W. In string is a tagged string

and of itself, this is correct. The problem is that this function directly modi- and tells the receiver

fies a server object. This is wrong for the same reasons as listed above. what that tag ID is.

: . ie Subsequently, when
So, how do we solve this? Well, before we solve this specific problem, let’s the sender wants the

¢ Action maps are in the client space, so no server variables should be

visible, or at least should not be touched, in this scope.

s

first talk in general about how client-server communications work. same receiver to use

this ‘tagged’ string, it

Client > Server Commands only needs to inform
the receiver that it is

Clients communicate with the server by requesting that the server execute a sending a tag and

named command. The syntax of this request is as follows. then transmit the tag

ID. In general, tags are

commandToServer(commandTag [, argO, ... , argN]); much shorter than the

strings they identify.

Calling this command (on the client) tells TGE to request that the server exe- Thus, using tags for
often transmitted

strings can produce

significant benefits in

. terms of networking

\ bandwidth savings.

cute a console function with the name serverCmd + commandTag, using the

arguments (if any) that were passed to commandToServer (). Regarding the

commandTag, this can be a string (“xyz”) or a tag (‘xyz’), but tags are gener-

ally preferred.

A concrete example of this would look like the following.

// This method would be defined in one of the script

// files that is loaded by the server:

function Player::Doit() {

// do something

415

Part fll

416

Game Elements

// This method (likely in a separate file) would also be

// defined in one of the script files that is loaded by

// the server:

function serverCmdDoit(S$client) {

éclient.player.Doit();

}

// This command would be executed in function or method

// defined in a script file loaded by the client:

commandToServer(‘Doit’);

When commandToServer(‘Doit’); is called, TGE will instruct the server

to call serverCmdDoit () and will pass in the ID of the calling client.

I repeat: the engine automatically passes in the ID of the calling client.

Therefore, all server commands (serverCmd*} must take the client ID as their

first argument.

Subsequently, the server will execute the function, and the player method

doit () will be executed for the player associated with that client.

Please understand that the implication is that the player ID is stored in a

field named player in the client connection object (%client.player). We do

this in the “game.cs” file (take a look).

Server > Client Commands

The server uses a similar method for executing commands on the client. The

syntax of this request is as follows.

commandToClient(clientID, commandTag [, arg0, ... , argN));

Calling this command (on the server) tells TGE to request that the numbered

client execute a console function with the name clientCmd + commandTag,

using the arguments (if any) that were passed to commandToClient ().

Regarding the commandTag, this can be a string (“xyz”) or a tag (‘xyz’), but

tags are generally preferred.

A concrete example of using commandToClient () would look like the

following.

// This method would be defined in one of the script files

// that is loaded by the client:

function PlayGUI::DoSomething(%ID, %x, %y) {

// do something

Gameplay Scripting Chapter 10

// This method (likely in a separate file) would also be

// defined in one of the script files that is loaded by

// the client:

function clientCmdTellPlayGUIDoSomething(%x, Sy) {

PlayGUI.DoSomething(%x , %y);

}

// This sample executes the same function on all clients

// connected to the server:

fFor(*clientIndex = 0; @clientIndex <

ClientGroup.getCount(); sclientindext+) {

SsomeClient = ClientGroup.getObject (sclientiIndex) ;

commandToClient(%someClient , ‘TellPlayGUIDoSomething’

SX , BY)?

The above example iterates over each client (from the server side) and tells the

client to do something with its PlayGUI at the coordinates x, y. In turn, each cli-

ent executes the method PlayGUI.DoSomething() with those coordinates.

10.6.3 The Takeaway

So, we talked briefly about client-server communication here, but what should

you take away from our discussion? Mainly, if you are going be using key-

strokes (via action maps) to execute server commands or manipulate server

variables, be sure to use the presented methodology. This way, if you decide to

make your singleplayer game a multiplayer game in the future, you won’t have

to go back and fix all of the cases where you violated the client-server divide.

10.6.4 Waving Sample Solution

Below is the solution to our original “waving” problem from above.

// Server-Side Functions:
function serverCmdPlayCel (%client,%anim) {

if (isObject ($client.player))

sclient.player.playCelAnimation (%anim) ;

function Player::playCelAnimation(%this,%anim) {

if (%this.getState() !$= “Dead”)

t$this.setActionThread(“cel”@%anim) ;

417

Part lil

418

Game Elements

// Client-Side Functions:

function celebrationWave (%val) {

if (val)

commandToServer(‘playCel’, “wave”);

// MoveMap (client-side) Mapping

moveMap.bind(keyboard, “ctrl w”, celebrationWave);

10.7 Summary

In this chapter, we discussed the features and classes that Torque provides for

enabling gameplay and interaction from scripts.

We introduced the idea of callbacks and discussed the most significant (in

the context of this guide) callbacks, including when they are called and how

they are used.

We next learned about the very important feature of event scheduling. We

came to understand that we can schedule functions to execute, and console

methods to execute upon specific instances of objects. We learned how to

track the progress of an event, how to cancel it, and how to repeat it.

Next, we talked about string manipulation and filled our heads with the

concepts of words, records, fields, tokens, etc. Furthermore, we explored the

purpose and usage of each of these concepts and the functions that Torque

supplies to work with them.

Math is a big part of game writing, and so we discussed scripted math in

great depth, discussing all of the most basic and most advanced math features

and functions supplied by Torque and available in TorqueScript.

Our second-to-last discussion in this chapter explored the edges of script-

ing and taught us about some tricks and techniques that, if used properly, can

create evolutionary and highly functional scripts.

Lastly, we dipped into the client-server aspect of the Torque Game Engine.

We learned some dos and don’ts when it comes to trading data between cli-

ent and server. Then, we learned how to send commands from clients to the

server and from the server to clients.

Chapter 11

Special Effects

Special effects, in the context of this chapter, are those effects that are for the

most part visual. We’re talking about such things as explosions, debris, particle

emitters, splashes, etc. Because each of these objects is unique in some sense,

yet similar to each other or used by other effects classes, I thought it best to

gather them here. So, there is some logic, even if you do consider it madness

to refer to projectiles as special effects.

Please note that there is no direct path to discussing these due to their

interconnectedness (try drawing the relationship tree some time); thus, this

chapter will be alphabetically organized.

11.1 Debris

Debris objects are used to represent the refuse left behind by an exploding or

destroyed object. However, this object is versatile enough to be used for vari-

ous purposes, including a rockfall that blocks the road, the remains of a fallen

building, etc.

11.1.1 Debris and DebrisData Features

Debris and DebrisData have the following features.

e Rendering

¢ 2D debris (particle)

¢ 3D debris (shape)

e Physics

.¢ Bouncing

¢ Sliding

¢ Falling

¢ Velocity limiters

¢ Spinning

¢ Limited lifetimes

e Behavior modifiers

¢ Subexplosions

¢ Bounce off water

¢ Replace debris with StaticShape
419

Part ill

420

Game Elements

* Modify resting orientation

¢ Particle emission

* Fading away

11.1.2 Rendering

Debris can be rendered as a 2D or 3D object, depending on our needs.

2D Debris (Particle)

If we are viewing debris from a distance, it will probably be sufficient to use a

billboard instead of a shape, which has a higher rendering penalty. In order to

create debris using just a billboard (a single texture), we specify our datablock

as follows.

datablock DebrisData(2D Debris) {

render2D = true;

texture = “path to texture file”;

//[sa.

};

3D Debris (Shape)

Of course, if 2D would always cut it, we wouldn’t be using a 3D engine, would

we? So, for those cases in which an object is needed, we specify a 3D debris

datablock as follows.

datablock DebrisData(3D Debris) {

render2D = false;

shapefile = “path to DTS file’;

//

be

11.1.3 Physical Properties

Debris can exhibit various random physical properties to give its behavior

realism or a required effect.

Starting Radius

One of the first questions to answer is, “How far from the explosion point will

the debris start?” As you will see in Section 11.3, most explosions take place

in the centroid of the shape, and for big shapes, it might be expected that the

debris starts some distance away from that point. By default, our debris will

start 0.2 world units from this point, but the distance can be greater if neces-

sary.

Special Effects Chapter | |

datablock DebrisData(startingRadiusDebris) {

//

useRadiusMass = true; // Use defined radius if > 0.2 world units

baseRadius = 4.0; // Start 4.0 world units from centroid

//

)i

Bouncing

It may make sense for the debris from an explosion to bounce a few times. To

accomplish this, we need to set a few parameters in our datablock.

datablock DebrisData(bouncyDebris) {

//

elasticity = 0.5; // A little bouncy, but not super-bouncy

numBounces = 5; // Bounce between: 3 and 7 times

bounceVariance = 2; // (numBounces +/- bounceVariance)

//

};

Note that elasticity can only be between 0.0 and 0.99. In addition to bouncing

off of solid objects, we can cause debris to bounce off of water. Here, we are

telling the engine to add the water type to our collision list.

datablock DebrisData(bounceOffWaterDebris) {

//

ignoreWater = false; // Bounce when we hit water too

//

};

Sliding

It might also be useful for our debris to slide a bit or, alternatively, to arrest

quickly.

datablock DebrisData(slidingDebris) {

//
friction = 0.1; // Slide for a long while before arresting

//

i

datablock DebrisData({ quickArrestDebris) {

//

friction = 1.0; // Stop sliding quickly
//

be 421

Part lll

422

Game Elements

Velocity and Falling

Now having solved where the debris will start and how it will behave when it

first hits something, we need to give it some oomph! We need to determine at

what rate it is initially moving and decide how gravity will affect it.

datablock DebrisData(highSpeedDebris) {

//

velocity= 20.0; // Debris starting velocity of:

// 19.5 - 20.5 world units/second

velocityVariance = 0.5; // velocity +/- velocityVariance

terminalVelocity = 30.0 // maximum velocity of

// 30 world units/second

//

i

The above datablock will produce a quickly moving debris effect, whereas

the one below will create a slowly moving effect. Additionally, we’ve set the

gravModifier to a negative value, meaning that the debris will float up

instead of falling down.

datablock DebrisData(lowSpeedFloatUpDebris) {

//

velocity= 2.0; // Debris starts with velocity of:

// 1.5 - 2.5 world units/second

velocityVariance = 0.5; // velocity +/- velocityVariance

gravModifier = -1.0; // Debris floats UP

terminalVelocity = 3.0; // Prevent debris from

// accelerating past 3

// world units/secona

//

bi

Spinning

Debris that maintains the same orientation would be a bit boring, so TGE pro-

vides a means of spinning the debris. The spin magnitude can be limited to

a specific range of degrees per second, and TGE will randomly select a value

in this range.

datablock DebrisData(slowSpinDebris) {

//

minSpinSpeed = -60;

maxSpinSpeed = 60;

//

Special Effects

Lifetime

Well, we’ve gotten to the end of the physical properties list. Now, we have one

more decision to make. How long will this debris last? In total, TGE will not

allow debris to exist longer than 1000 seconds, but that should be sufficient

for most needs.

datablock DebrisData(twoMinuteDebris) {

//

lifetime = 240.0; // This debris lasts exactly two minutes

lifetimeVariance = 0.0; // lifetime +/- lifetimeVariance

//

)i

11.1.4 Additional Behaviors

Beyond the physical properties, there are a few things we can modify to make

our debris really work for us. We can instruct debris to exhibit several behav-

iors during its lifetime, on last bounce, or at the end of its life.

Explosions

We can cause debris to explode when it achieves maxBounce. And yes, this

explosion can make more debris; just be sure not to use the same datablock or

you could cause a cyclic explosion that will eventually crash the engine.

datablock DebrisData(explodingDebris) {

//

explodeOnMaxBounce = true; // Blow up on last bounce

explosion = “an explosion datablock”;

//

he

Replace Debris with StaticShape

Sometimes we don’t want our debris to disappear. Perhaps, for our gameplay,

we need this debris to build up and remain for the remainder of the mission.

Well, this can easily be accomplished.

datablock DebrisData(staticDebris) {

//

staticOnMaxBounce = true; // Do not delete this shape

//

}i

™ you may want to limit

Chapter 1} |

Because there are

several endings for

any particular debris,

combining other

endings with this one,

such as explode or

fade, may not give

you the results you

are looking for. Also,

accumulating too

much debris can kill

your frame rates, so

debris in some way.
423

Part Il

424

Game Elements

Fixing Orientation

In addition to causing debris to remain in the world, either permanently as a

static or by giving it a long lifetime, we may wish for it to be oriented to the

surface below it when it comes to rest. Thus, there is a way to tell the engine

to correct the orientation of our debris when it achieves maxBounce.,

datablock DebrisData(reOrientedDebris) {

//

snapOnMaxBounce = true; // Snap to surface below me

// "

i

Fireballs, Particle Trails, Etc.

Having just survived an explosion, the fundamental components of this

destroyed shape (the debris) may be on fire and/or trailing smoke or dust. We

need a way to simulate this. Fortunately, each debris can have up to two par-

ticle emitters attached to it. Thus, if we so choose, we can specify two PEDs.

Gatablock DebrisData(flamingDebris) {

//

emitters (0] “FireBall”; // A PED simulating a fireball.

emitters[(1] = “SmokeTrail”; // A PED simulating smoke.

//

be

Fading Away

Perhaps appropriately, the last effect we can control for debris is fade. Specifi-

cally, if we so choose, we can specify that debris will fade out of sight over the

last second of its lifetime.

GQatablock DebrisData(fadeoutDebris) {

// .

fade = true; // Fade out in last second of lifetime.

//

);

datablock DebrisData(poppingDebris) {

//
fade = false; // Don’t fade, just pop out of existence

// suddenly

//

hi

Special Effects

11.1.5 Using Debris

Debris is used by a number of classes and can also be used standalone; i.e., it

is possible to create a standalone debris object.

Used-by Classes

Debris is used by the following classes.

e ShapeBaseData. Created when shape transitions to “Destroyed.”

e ShapeBaseImageData. Used to represent ejected shell casings.

e ExplosionData. Used to represent explosion debris.

Standalone

To create a standalone instance of debris is as easy as the following.

datablock DebrisData(standaloneDebris) {

// Fill in parameters to suit your needs.

};

’myDebris = new Debris() {

datablock = standaloneDebris;

position = “a position vector’;

};

Alternatively, if you don’t wish to specify position and you would like to give

this debris an initia] velocity (prior to internally applied velocities), you could

use the following code.

$myDebris = new Debris() {

datablock = standaloneDebris;

};

smyDebris.init(“a position vector” , “a velocity vector”);

11.2 Decals

Decals in the context of TGE are temporarily rendered textures that are applied

to objects to represent things like footprints, bullet holes, other types of dam-

age, etc. Most properties of decals are controlled by the objects that use them,

but there are a few things we can control.

Chapter |!

425

Part {Il

Table 11.1.

Variables used by

DecalManager.

426

Game Elements

11.2.1 DecalManager and DecalData Features
DecalManager and DecalData have the following features.

e Variable timeout

¢ Total decal caps

¢ Global enable

11.2.2 Decal Properties

For the decals themselves, we can only specify a minimal set of information

via the datablock. Specifically, we can specify the size of the decal and the

texture it uses.

datablock DecalData (sampleDecal) {

sizeX = 0.25 ; // 1/4 world unit ‘wide’

sizeY = 0.50 ; // 1/2 world unit ‘tall’

textureName = “Path to texture file”;

}i

That is about it. Table 11.1 shows a few other global parameters that are used

by the decal manager.

Spref::Decal::decalTimeout | This is the time a decal [0, inf)

lives before self-deleting. It (default is 5
is specified in milliseconds. seconds)

Spref::Decal::maxNumDecals | This is the limit on how 256

many decals may exist at (default)
any one time. Once this

limit is passed, old decals

are immediately deleted to

allow for new decals.

Spref::decalsOn This is a global toggle to { true, false]

enable/disable decals. (true by default)

11.2.3 Using Decals

Decals are used by two classes, ProjectileData and PlayerData. They cannot

be created standalone.

Special Effects

Used-by Classes

Decals are used by the following classes.

e ProjectileData. Used to specify a ‘bullet’ mark on collision.

e PlayerData. Used for footprint(s).

See Section 7.3.2, “Player Special Effects,” for an example of decals in use.

11.3 Explosions

The concept of explosions hardly needs to be introduced, but a review of

the myriad features TGE provides to implement them would be worthwhile.

Explosions can be thought of as a composite object and include the following

subcomponents: particles, shapes, debris, and lighting.

Additionally, the following may be associated with an explosion.

e Camera shake. A nearby explosion can be programmed to shake the client’s

camera.

e Sound. A sound can be associated with each explosion.

e More explosions. Explosions can spawn subexplosions.

11.3.1 Building up an Explosion

General Control

Ignoring all the components and focusing on the explosion as if it were a

single entity, we can control the following elements.

Post-Creation Play Start Time

datablock ExplosionData(delayedFuseExplosion) {

//.
delayMS = 4000; // Play explosion between 3 and 5

// seconds after

- delayVariance = 1000; // creation. delayMS +/-

// delayVariance

//

};

In effect, we can delay the beginning of an explosion for a maximum of about

65.5 seconds (65,536, or 2'%, milliseconds) after the actual explosion object

has been created. The question that arises is, “Why do this?”

Chapter 1

427

Part Il

428

Game Elements

To answer that question, we first have to explain how explosions play out.

The gross steps an explosion takes are the following.

. Object created.

. Explosion event starts.

. Subexplosion objects created.

. Main explosion ‘event plays.
wm

FP
W
N

. Explosion ends.

The key thing to notice is that subexplosions are spawned at the same time

the main explosion starts to play. So, if we did not have this delay mechanism,

all of our explosions would overlap, and that would not be much fun.

Explosion End Time and Play Speed

In addition to specifying a starting time, we can specify how long the event

lasts. TGE provides a knob for “scaling” the event.

datablock ExplosionData(longExplosion) {

//

lifetimeMS = 20000; // Play explosion for 19 to 21 seconds.

lifetimeVariance = 1000; // lifetimeMS +/- lifetimeVariance

//

i

So, what about this scaling business? What use is it if we can control the

lifetime? Well, besides being nice for quick tuning, it is also nice to adjust

an inherited explosion where the only thing we want to change is the rate it

plays at.

datablock ExplosionData(halfAsLongExplosion

longExplosion) {

//

playSpeed = 2.0; // Voila, scaled to play twice as fast!

//

};

Initial and Subsequent Scaling

Not all explosions are made equal, and over time, the size of an explosion

normally evolves. Thus, TGE provides two sets of features. One is for initial

scaling.

datablock ExplosionData(humongousExplosion) {

//

Special Effects Chapter } |

explosionScale = 5.0; // Explosion fills a 5-world units cube

//

i

A second feature is for scaling over time. By the way, if you have already

looked at the particle emitters description in Chapter 8, “Mission Objects,” the

following should look familiar.

datablock ExplosionData(resizingExplosion) {

//
explosionScale = 5.0;

sizes(0) = “1.0 1.0 1.0”;

sizes[1] = “1.0 1.0 1.5”;

Sizes[2] = “1.0 1.0 2.0”;

sizes[3] = “0.1 0.1 0.1”;

times[0) = 0.0;

times[1]) = 0.33;

times[2] = 0.66;

times[3) = 1.0

//

}?

The above explosion starts out filling a 5-world units cube. It smoothly

increases in height until it hits 10 world units (5.0 x 2.0 world units) at two-

thirds of the way through its lifetime. Scaling then reverses direction and in

the remaining third of its life it shrinks to a 0.5-world units cube. Poof!

Facing

Depending on the effect we are trying to achieve, an explosion should or

should not rotate to face the viewer. Please note that this rotation is the entire

explosion object and not related to the settings applied to the particles.

datablock ExplosionData(faceMeWhenYouExplode) {

//

faceViewer = true; // This explosion rotates to face the camera

//

);

Initial Offset

The last of the basic explosion control mechanisms controls the initial posi-

tion of the explosion center. Because it would be boring to have subexplosions

always forming in the same location, TGE provides a feature wherein we can

429

Part Itl

430

Game Elements

specify an offset, which is then multiplied by a unit-length vector with a ran-

dom facing. The tip of the resultant vector will be the explosion’s center.

datablock ExplosionData(formWithinTwoMeterRadiusExplosion

) {

//

offset = 2.0; // Explosion will form at a random point

// two world units from creation position

//

\;

11.3.2 Particles

Now that we’ve got the basic parameters of our explosion set, we need to

choose our particles. TGE explosions support up to five independent parti-

cle emitters. Furthermore, one of these emitters is standalone and four are

played together. The single emitter is not treated the same as the four other

emitters.

Standalone Emitter

The standalone emitter has two knobs not available for the other four generic

emitters. We can control the radius within which this emitter forms from the

explosion center, which is similar to the offset principle for the emitter itself.

Also, we can select a particle density for this emitter in addition to the con-

trols provided by the emitter definition itself.

GQatablock ExplosionData(uniEmitterExplosion) {

//

particleEmitter = “Some PED”;

particleDensity = 0.6;

particleRadius = 1.2;

//

i

The above explosion uses some particle emitter to randomly produce particles

whose origin is somewhere within a sphere having a radius of 1.2 world units.

This emitter will move continuously over the life of the explosion and has a

density of 60 percent.

Those Other Emitters

The other emitters can optionally be used to specify up to four additional

emitters whose position is the center of our explosion.

Special Effects Chapter 1

datablock ExplosionData(fourEmitterExplosion }) {

//

emitter(0]

emitter(1]

emitter (2]

emitter([3)

//

“Some PED 0”;

“Some PED 1”;

“Some PED 2”;

“Some PED 3”;

it

};

11.3.3 Explosion Shape

Alternately, or in addition to particles, we may choose to represent our explo-

sion with a mesh. Furthermore, this shape can be animated. If we so choose,

we can create an animation named ambient, which TGE will automatically

start when the explosion starts.

datablock ExplosionData(shapeExplosion) {

//

explosionShape = “Path to a DTS file”;

//

bi

11.3.4 Debris

Now that we know what our explosion is composed of, we can choose to add

some debris to liven things up. Our debris is emitted in much the same fash-

ion as particles from a particle emitter. Therefore, these parameters should

mostly look familiar.

datablock ExplosionData(explosionWithDebris) {

//

debris = “Some Debris datablock name”;

debrisNum = 1000; // Between 800 and 1200 debris ejected

debrisNumVariance = 200; // debrisNum +/- debrisNumVariance

debrisThetaMin = 0.0; // Straight up, to

debrisThetaMax = 180.0; // Straight down

debrisPhiMin = 0.0; // Straight down Y, to

debrisPhiMax = 360.0; // All the way around (full rotation)

debrisVelocity = 20.0; // Eject @ between 20 and 30 world units/second

debrisVelocityVariance = 10.0; // debrisVelocity +/- debrisVelocityVariance

//

431

Part III

432

Game Elements

Actually, these controls are a little nicer than particle controls in a way because

both phi (left-right) and theta (up-down) can be varied within a range, and

the randomness is free.

11.3.5 Lighting Effects

So, what if we want our explosion to emit light? Can we do it? Heck yes. In

fact, we can emit a light that changes both color and radius over the lifetime

of the explosion.

datablock ExplosionData(lightedExplosion) {

//

lightStartColor = “1. 0.8”; // Start of £ light yellow

lightEndColor = “0.6 .0”; // End a deep maroon

lightStartRadius = 5. // Start with a S5~-world units radius

lightEndRadius = 15.0 // End with a 15-world units radius

//

);

0 1.0

0.0 0

0;

11.3.6 Camera Shake

Finally, we’ve completed the list of things we’ll be seeing. Now let’s look into

a physical effect. Normally, if a viewer is near enough to an explosion and

there is enough energy involved, you would expect the view to shake for a bit

as a result. TGE allows us to do this, too. .

datablock ExplosionData(rockMeExplosion) {

//

shakeCamera = true;

camShakeRadius = 20.0;

camShakeAmp = “1.01.0 1.57;

camShakeFreq = “8.0 10.0 8.0”

camShakeFalloff = 2.0;

camShakeDuration = 3.5;

//

i

The above explosion will cause all cameras within a radius of 20 world units

to shake. The amplitude of this shaking will be moderate, though slightly

stronger in the up-down direction. The oscillation for the shaking will be

somewhat weak to normal in the y (front-back) direction. What this means

is the shaking is stronger up-down but happens faster back-and-forth. Yes, it

is weird, but it’s an example! Finally, the strength of the shaking will fall off

to half its strength at the outer limits and then fall off to zero abruptly. This

Special Effects

shaking will last for about 3.5 seconds from the start of the explosion. Boom!

Rumble... rumble....

11.3.7 Sound

I know, you may be thinking, “What good is an explosion without sound?”

Good, but not great by any means. Fortunately, we won’t have to find out. We

can specify a sound to accompany our explosion. This sound should probably

be a 3D sound, but 2D works for some cases, too.

datablock ExplosionData(soundMeExplosion) {

//

soundProfile = “A sound profile name”;

//

hi

11.3.8 Subexplosions

That’s it, right? I’m thinking, “Why have one of a good thing when you can

have more than one?” And so were those canny GarageGames programmers.

Each explosion can spawn up to five more subexplosions, which can each

spawn five more, and so on. Well, don’t get carried away, OK?

datablock ExplosionData(MamaExplosion) {

//

subExplosion[0] = “BabyExplosionO”; // An explosion datablock

subExplosion[1] = “BabyExplosion1l”; // An explosion datablock

subExplosion[2] = “BabyExplosion2”; // An explosion datablock

subExplosion[3] = “BabyExplosion3”; // An explosion datablock

subExplosion[4] = “BabyExplosion4”; // An explosion datablock

//

hi

11.3.9 Thinking about Damage

It would be a very strange explosion that did not have some kind of effect, be

it damage or something else. Therefore, TGE supplies a nice console function

to calculate how much an object is affected by the explosion. The name is a

bit misleading, but basically, the function returns a value telling us how cov-

ered by the explosion this shape is. A requirement for this to work is that we

specify which shapes can be affected.

Sboom = new Explosion() {

//

}e

name

name

name

name

name

Chapter ||

433

Part Ill

434

Game Elements

// Check to see if player got hit

Scoverage = calcExplosionCoverage(%boom.getPosition() ,

Splayer,

STypeMasks::PlayerObjectType);

if (%coverage > 0.0) echo(“Ouch! ouch! ouch!”);

11.3.10 Using Explosions

Explosions are spawned in a number of ways and by a number of classes.

Nicely, they can be made standalone, too.

Used-By Classes

Explosions are used by the following classes.

¢ ShapeBaseData. Created when shape transitions to “Destroyed.”

e SplashData. Created on precipitation impact.

e ProjectileData. Yeah, it’s pretty obvious. Sure, an explosion would be good

for this.

¢ DebrisData. Gee. Explosions spawn debris; debris can spawn explosions.

It’s a vicious circle.

e ExplosionData. Woohoo! Let’s blow it up reeeaaal gooood.

Standalone

To create a standalone instance of an explosion is as easy as the following.

datablock ExplosionData(MyExplosion) {

// Fill in paramters to suit your needs.

};

smyDebris = new Explosion() {

dataBlock = MyExplosion;

position = “a position vector”;

\;

11.3.1] Maze Runner Lesson #19 (10 Percent

Step)—FireBall Explosion

In this lesson, we will examine three datablocks that are supplied with the

MazeRunner prototype code. These datablocks are used to implement the

explosion that occurs when a projectile (see Lesson #20) explodes.

If you look in file “\MazeRunner\prototype\server\scripts\MazeRunner\

FireBall.cs”, you will find the following three datablocks.

Special Effects

e FireBallExplosionParticle. This datablock defines the particles that are

used in the explosion.

e FireBallExplosionEmitter. This datablock defines the pattern for the explo-

sion emission.

e FireBallExplosion. This datablock defines the way in which the emitter is

played and the effects that the explosion has on the surroundings.

FireBallExplosionParticle

Let’s look at the code for this emitter.

Chapter 1 |

datablock ParticleData(FireBallExplosionParticle : baseSmokePDO) {

lifetimeMS = 750;

lifetimeVarianceMS = 200;

colors[0] = “1 0.2 0.2 1.0%;

colors[1] = “1.0 0.6 0.2 0.0”;

sizes[0] = 1.5;

sizes[1] = 3.5;

he

We will first notice that it is inheriting from datablock baseSmokePDO. This is

very important for the following reasons.

1. A large variety of effects can be created using a small set of particle textures.

2. The GPGT Lesson Kit comes with a variety of predefined particle datablocks

as well as emitters. You should use these as the base (through inheritance

or good old cut-copy-paste) for your own particle effects and tweak just the

parts that you need.

3. A large variety of effects can be created using a small set of particle tex-

tures. Yes, I just said this, but I want to drive the point home. You don’t

need to go crazy and create a ton of textures. Instead, tweak the datablock

fields, and you will be surprised at the number of effects you can achieve.

In this case, we are inheriting a basic smoke particle and then adjusting the

fields in Table 11.2.

lifeTimeMSs The base particle has a rather long life, but we want our

lifeTimeVarianceMS | explosion particles to live for a shorter time.

colors[0] We're trying to get a reddish explosion that fades to a dark
colors[1] orange.

sizes [0] The particle should start off fairly big and rapidly grow to a

sizes{1] little more than double its original size.

Table 11.2.

Fields being adjusted.

435

Part ti Game Elements

FireBallixplosionE mitter

Next, we must define an emitter. In this case, our emitter is new and does not

inherit from a base emitter.

datablock ParticleEmitterData (FireBallExplosionEmitter) {

ejectionPeriodMS = 7;

periodVarianceMS = 0;

ejectionVelocity = 1;

velocityVariance = 1

ejectionoffset = 0;

thetaMin = 0;

thetaMax = 60;

pniReferencevel = 0;

phiVariance = 360;

overrideAdvances = false;

particles = “FireBallExplosionParticle”;

};

a

The above datablock will produce an emitter that will create a large number

of particles in a short period. These particles will be ejected at between 1

and 2 world units per second with no offset. The direction of the emitter will

vary from straight up to just above horizontal. Additionally, particles will be

ejected in a complete circle about the up vector at the point of explosion.

Lastly, this emitter uses the particle we just defined.

FireBallExpiosion

This last datablock uses the prior two io define the actual explosion.

datablock ExplosionData(FireBallExplosion) {

lifeTimeMS = 2000;

particleEmitter = FireBallExplosionEmitter;

particleDensity = 50;

particleRadius = 0.2;

faceViewer = true;

// Dynamic light

lightStartRadius = 0;

lightEndRadius = 6;

ligntStartColor = “1 0.2 1%;

lightEndColor = “1 0.6 0.27;

bs

This explosion will live for 2 seconds, emitting particles the entire time. It

436 uses the emitter we just defined and limits the number of simultaneous par-

te ere --

Special Effects

ticles to just 50 at any one time. It varies the point of ejection randomly by

up to 0.2 world units about the point of explosion. The particles are made

to face the viewer at all times, thus making sure that the clouds of particles

are always nice and uniform. The explosion will produce light in a radius of

6 world units that starts off reddish and ends a dark orange. Please note that,

because the blocks are self-illuminating, this effect will not be very visible.

You may wish to re-export the blocks without self-illumination enabled to see

if the effect is more pleasing this way.

11.4 Projectiles

Although the concept of a particle has a very strong tie to weapons, in truth,

these objects do not have to be associated with any weapon. Their real value

is that they represent an object that can be put into motion and will eventu-

ally collide with another object and do something. Yes, it’s vague, but that is

the point. Projectiles are a versatile object and can be used for many kinds of

interactions, not just to represent arrows, bullets, and bails of plasma.

11.4.1 Designing a Projectile

The Beginning

As noted above, a projectile is an object “in” the world. It has a starting posi-

tion, an ending position, and may interact with objects between those two

points. Our first focus is on understanding how to get this particle into the

world at its starting point.

Soullet = new Projectile() {

dataBlock = %projectile;

initialVelocity = %muzzleVelocity;

initialPosition = %ownerOb).getMuzzlePoint (SmountSlot) ;

“sourceObject = %ownerObj;
sourceSlot = %mountSlot;

);

This sample is a snippet of code taken from some example code that comes

with the GPGT Lesson Kit. As can be seen, it is completed parameterized. The

important things to note are the following.

© dataBlock. Initialized with some known datablock definition. Quite

standard.

e initialVelocity. The projectile is told its initial velocity on creation.

The implication here is that we can choose any velocity and direction for

Chapter 1] |

437

Part ill

438

Game Elements

this projectile that we want, when we create it. It isn’t magically deter-

mined by some engine code related to weapons or some such.

e initialPosition. Normally, we specify a position for objects when we

create them, but a new field was added to reduce interdependency, and

thus we have initialPosition. This is where our bullet starts, and it,

too, can be anywhere we want it to be.

® sourceObject. As a rule, this should be the player or other entity that is

responsible for the creation of this projectile. The main purpose of this field
is to give a rendering priority hint to the engine. If the projectile “belongs”
to the client’s camera, it will get processing priority there. If there is no

source object {i.e., this is created standalone), set this to 0.

* sourceSlot. This should match the slot the firing weapon is mounted to.
If this projectile is not associated with a weapon/slot, it should be set to

-l.

That is it. We’ve created a projectile and set it on its way. Not very hard and

not really interesting. As is often the case, the interesting stuff is embedded in

the object’s datablock.

The Databliock

Projectiles are fairly flexible, exhibiting a significant set of traits, all of which

are configured via the datablock.

Projectile Representation

It is not strictly required, but if we want, the projectile can have an associated

shape.

datablock ProjectileData(HumongoProjectile) {

projectileShapeName = “Some DTS file”;

scale “20.0 20.0 20.07%;

//

hi

In this datablock, we have specified some mesh to represent the projectile and

have scaled it 20 times in each dimension.

Shape Animations

If we have chosen to use a shape, we can additionally supply two animations

named activate and maintain. The activate thread will play immedi-

ately after the shape is created. We can specify this to be a cyclic or a non-

cyclic animation. If the activate thread is noncyclic, and if we have speci-

Special Effects Chapter | |

fied a maintain thread, the maintain thread will begin playing as soon as

the activate thread finishes. The maintain thread can also be cyclic or

noncyclic.

Ballistics and Gravity

A projectile may choose to ignore gravity and to follow a nonballistic trajec-

tory, or to add some challenge to aiming, we can play with the way gravity

affects our ballistic projectile.

datablock ProjectileData(NonBallisticProjectile) {

//
isBallistic = false; // Not affected by gravity

//

bi

dataBlock ProjectileData(steepArcProjectile) {

//

isBallistic = true; // Is affected by gravity, and

gravityMod = 3.5; // gravity affects this 3.5x more than normal objects

//

i

Bouncing Around and Arming Delays

It may not always be appropriate for a projectile to do damage right away. It

might be nice to create a weapon that can bounce its projectiles off of obsta-

cles for a certain amount of time prior to doing damage. We can accomplish

this by making the projectile bouncy and by delaying its activation.

dataBlock ProjectileData(delayedBouncingProjectile) {

//
armingDelay = 16; // Delay arming for ~1/2 second (16 ticks)

bounceElasticity = 1.0; // I’m pretty bouncy

bounceFriction = 0.5; // Reduce projectile velocity by this factor and

// a multiple of the tangent to impact.

isBallistic = true; // Only ballistic projectiles can bounce.

//

3

If a projectile is not yet armed, it will only bounce if it is ballistic. Nonballistic

projectiles penetrate, instead.

439

Part fll

440

Game Elements

Particles

Projectiles have the ability to attach up to two emitters to them. However,

these emitters play at different times. The rules for their activation are simple.

The emitter specified by particleEmitter always plays when the projectile

is not underwater. The emitter specified by particleWaterEmitter plays

when the projectile .is underwater. Neither plays when the projectile is enter-

ing or leaving the water. That is a job for the splash object. Having clarified

that, the following is how we specify them.

datablock ProjectileData(DualEmitterProjectile) {

//

particleEmitter = “Some PED for above water ONLY”;

particleWaterEmitter = “Some PED for below water ONLY”;

//

i

Lit Projectiles

Our projectile can emit a light for the duration of its life. Additionally, we can

specify whether the light should be emitted when the projectile is under water

and what the color should be for each case (below water or above water).

Both cases share the same light radius.

datablock ProjectileData(LitProjectile) {

//

hasLight = true;

lightColor = “0.8 0.8 1.0”;

hasWaterLight = true;

waterLightColor = “0.8 0.8 1.0”;

lightRadius = 4.5;

//

);

Explosions

Many times, we will want some kind of explosion effect when our projectile is

armed and strikes something. Explosions wil] not happen until the particle is

armed. As with particles and light, we have the ability to specify above- and

below-water behaviors. However, the relationship for these two explosions

are a little different than the prior two effects. Table 11.3 is supplied to clarify

which explosion we get based on what explosions are specified and if the

projectile is currently underwater or not.

Special Effects

N Y N - none -

N Y Y waterExplosion

Y N N explosion

Y N Y explosion

Y Y N explosion

Y Y Y waterExplosion

Specifying our explosion datablocks works as follows.

datablock ProjectileData(NormalExplodingProjectile) {

//

explosion = “An Explosion Datablock”;

waterExplosion = “An Explosion Datablock”;

//

he

Splashes

It was mentioned above that a projectile entering or leaving the water will try

to render a splash, and this is true, as long as one is specified.

datablock ProjectileData(SplashOnWaterStrikeProjectile) {

//
splash = “A Splash Datablock”;

//

}e

Bullet Holes

It may be the case that we would like the projectile to leave a mark when it

explodes. Currently, TGE allows us to make these marks using decals, but only

for explosions that happen on interiors or the terrain. Because TGE shapes

use simplified collision-detection meshes, it isn’t very easy to apply decals to

shapes. It can be done but will require some coding.

As a bonus, TGE allows us to specify up to six different decals, one of

which will randomly be applied to the interior or terrain when the projectile

explodes.

Chapter | |

Table 11.3.

Explosions above and

below water.

441

Part Ill

442

Game Elements

datablock ProjectileData(MultiDecalProjectile) {

//

decals[0] = “Decal Datablock 0”;

decals[1] = “Decal Datablock 1”;

decals[2] = “Decal Datablock 2”;

decals[3] = “Decal Datablock 3”;

decals[4] = “Decal Datablock 4”;

decals[5] = “Decal Datablock 5”;

//

}i

Sound

Although some projectiles are noiseless, it is often nice to have a sound asso-

ciated with our projectile. Furthermore, if the sound is 3D and the projectile

is not too fast, we can get a nice “just missed” effect with a good sound sys-

tem. Simply specify an audio profile to use, and the projectile will play the

sound starting when the projectile is created and ending when the projectile

explodes or fades away.

datablock ProjectileData(NoisyProjectile) {

//

sound = “An Audio Profile”;

//

}e

Lifetime and Fading Away

Consider what would happen if all misses kept traveling forever and never got

removed. Eventually, the game could have tens of thousands of objects con-

suming CPU time. Thus, TGE imposes a maximum life for each projectile of

128 seconds (just over two minutes). The lifetime of a projectile is in ticks

(1/32 of one second). Here is a particle that will live for one minute.

datablock ProjectileData(OneMinuteProjectile) {

//

lifetime = 32 * 60; // Live for one minute

//

he

Also, because slow-moving projectiles should not just pop out of existence,

TGE has a feature that allows us‘to start fading the particle out of sight after

a number of ticks.

Special Effects

datablock ProjectileData(SlowFadeProjectile) {

//

lifeTime = 32 * 5; // Lives for 5 seconds

fadeDelay = 32 * 1; // Starts fading at 1 second (i.e.

//

}i

Inherited and Muzzle Velocities

Recall when | said we (our scripts) are responsible for imparting actual veloci-

ties to the projectile? Well, the smart GarageGames programmers provided a

couple of standard fields that we can use in our scripts. To specify the projec-

tile’s initial (muzzle) velocity, use the following.

datablock ProjectileData (SupaFastProjectile ») {

//

// Tell scripts to set velocity @ 8000 world units/second !!!

muzzleVelocity = 8000.0;

//

he

To specify the velocity that the projectile should inherit from any object it is

attached to, use the following.

datablock ProjectileData(FallBehindProjectile) {

//

velInheritFactor = 0.5; // Only inherit half of velocity

//

};

11.4.2 Using Projectiles

Only one class has a field for projectiles, and that is only so that TGE can

optimize for state-machine transitions. That class is the ShapeBaselmageData

class. You don’t need to specify a projectile, but if you are using one, it is a good

idea, as this will help avoid rendering hiccups while the weapon is fired.

Standalone

Because projectiles are always created by scripts, it is our responsibility to

initialize all pertinent parameters for them. If you find this confusing, you

should refer to the code for the GPGT Lesson Kit’s Projectiles Lesson. Because

I know you're just dying to see some code, here is a truncated version of the

code from the GPGT Lesson Kit for a standard projectile weapon (this code

was derived from the standard TGE SDK crossbow script).

4 second fade)

Chapter 11

443

Part Ill

444

Game Elements

function EGWeaponImage::onFire(%imageDB , %ownerObj ,

SmountSlot) {

Sprojectile = %imageDB.projectile;

// Determine initial projectile velocity based on the

// gun’s muzzle point and the object’s current velocity

$muzzleVector’'= %SownerObj.getMuzzleVector (%mountSlot);

sobjectVelocity = %ownerObj.getVelocity();

SmuzzleVelocity = VectorAdd (

VectorScale(%SmuzzleVector, %projectile.muzzleVelocity),

VectorScale (%objectVelocity, %projectile.velInheritFactor));

// Create the projectile object

S$bullet = new Projectile() {

dataBlock = %projectile;

initialVelocity = %muzzleVelocity;

initialPosition = %ownerObj.getMuzzlePoint (%mountSlot);

sourceObject = %ownerObj;

sourceSlot = %mountSlot;

client = %ownerObj.client;

}e

MissionCleanup.add(%bullet) ;

return %bullet;

11.4.3 Maze Runner Lesson #20 (90 Percent

Step]—The FireBall

In this lesson, we will examine three of the six datablocks that are supplied

with the MazeRunner prototype. These datablocks are used to implement the

projectile representing the fireball.

If you look in the file “\MazeRunner\prototype\server\scripts\MazeRunner\

FireBall.cs”, you will find three datablocks.

FireBallParticle. This datablock defines the particles that are used for the

projectile’s trail.

FireBallEmitter. This datablock defines the pattern for the trail.

FireBallProjectile. This datablock defines the projectile itself and uses the

above two datablocks as well as the three we discussed in Lesson #19

(Section 11.3.11) (FireBallExplosionParticle, FireBallExplosionEmitter, and

FireBallExplosion), which are used for the explosion.

Special Effects

FireBaliParticle

Again, we have chosen to implement our particle datablock by using inheri-

tance, but this time many parameters have been modified.

datablock ParticleData(FireBallParticle : baseSmokePDO) {

dragCoeffiecient = 0.0;

gravityCoef ficient

inheritedVelFactor

0.0;

0.0;

lifetimeMS = 350;

lifetimeVarianceMS = 50;

spinRandomMin = -30.0;

spinRandomMax = 30.0;

colors[0] = “1 0.7 0.7 1.0”;

colors[1i] = “1 0.7 0.7 1.0%;

colors[2] = “1 0.7 0.7 0”;

sizes[(0) = 0.5;

sizes[{1] = 0.7;

sizes[2] = 1.0;

times[0] = 0.0;

times[1] = 0.3;

times[2) = 1.0;

\;

The particles this produces will not be affected by drag or by gravity, nor

will they inherit any velocity from the emitter. This means that they will just

hang in the air where they are produced. They have a pretty long lifetime,

between 300 and 400 milliseconds. As they hang in the air, they will spin back

and forth between minus 30 and 30 degrees. Lastly, the smoke will start as

medium sized off-white puffs and end as large gauzy white puffs.

FireBallEmitter

The emitter datablock is fairly short because it doesn’t have a lot to do for

smoke trails.

datablock ParticleEmitterData(FireBallEmitter) ({

ejectionPeriodMS = 20;

periodVarianceMS = 5;

ejectionVelocity = 0.25;

velocityVariance = 0.10;

thetaMin= 0.0;

Chapter | |

445

Part Ill

446

Game Elements

thetaMax = 180.0;

particles = FireBallParticle;

hi

This emitter will produce a new particle every 15 to 25 milliseconds, meaning

that the trail may be a little spotty (the projectile is moving at 20 world units

per second if you will recall from Lesson 418 (Section 10.3.7)).

The particles themselves have very little velocity when ejected, and they

are all ejected between straight up and straight down (we could make this

range smaller to create a more narrow trail).

Lastly, the emitter uses the particle datablock we just discussed.

FireBaliProjectile

This datablock brings all of the work in the prior lesson and this one together

to create the fireball.

datablock ProjectileData(FireBallProjectile) {

projectileShapeName =

“~/data/MazeRunner/Shapes/Projectiles/projectile.dts”;

explosion = FireBallExplosion;

particleEmitter = FireBallEmitter;

armingDelay = 0;

lifetime = 5000;

fadeDelay = 4800;

isBallistic = false;

he

This particle uses a mesh that is provided with the GPGT Lesson Kit. It is noth-

ing more than a very small elongated pyramid with a simple texture applied

(Figure 11.1). It uses the explosion datablock and the (smoke trail) emitter

defined above.

There is no arming delay, so the Figure 11.1.

projectile will explode as soon as it Fireball projectile.

strikes an object.

The projectile will live for 5 sec- =

onds and begin to fade at 4.8 seconds.

At the end of its lifetime, it will auto-

matically be deleted if it has not already impacted upon something.

It is nonballisitic and will travel in a straight line along the path on which

it is fired. . ,

Special Effects Chapter |}

shootFireBall ()

We deferred our discussion of the fireball-shooting method until this chapter

so we would have the proper context. The main thing to understand is that,

when we create a projectile and put it into the world, it starts with an instan-

taneous velocity and direction (as specified at creation time).

function StaticShape::shootFireBall(tmarker, %projectile ,

$pointingVector , velocity) {

Sbullet = new Projectile() {

dataBlock = %projectile;

initialVelocity = vectorScale(vectorNormalize (%pointingVector) ,

velocity);

initialPosition = %marker.getWorldBoxCenter () ;

sourceObject = -1;

sourceSlot = -l;

theMarker = %*marker;

}e

Smarker.bullet = %bullet;

MissionCleanup.add(%bullet) ;

}

The most important things to see in the above code are the following.

1. The initial velocity is a combination of a direction and a magnitude.

2. The projectile can have any initialPosition, and we are choosing the

centroid of the fireball block. This is important, because it demonstrates
that collision detection only occurs for penetrations of a collision mesh, not
for objects or rays leaving the mesh, as is the case with this projectile.

1 1.5 Sounds

TGE supports both 2D and 3D sounds. Standard TGE uses OpenAL for sound

support, but resources have been written on how to use other libraries like

FMOD. Sound is an area in TGE that, at first, may seem difficult, but in the

end turns out to be simple and well organized. All TGE sound ts supported

via three mechanisms.

e Audio descriptions (ADs)

e Audio profiles (APs)

e Console functions

447

Part Ill

448

Game Elements

Additionally, there are two defunct features (which could be made to work

with some love).

e AudioSampljeEnvironment

e AudioEnvironment

11.5.1 Sound Dimension

For simplicity, sounds are often described as being either 2D or 3D. Now, both

2D and 3D sounds are 3D in the sense that, when they are played, the user’s

gaming setup will attenuate and otherwise modify them. The actual distinc-

tion being made here is how the sounds will be calculated and treated prior to

being sent to the speaker(s).

2D Sounds

These are sounds that have no apparent source. Their gain is not attenuated

by position or orientation. Some sounds with this dimension are:

menu and interface feedback sounds,

intro music,

background music, and

global environmental sounds (wind, thunder, rain, etc.).

3D Sounds

These are sounds with a specific source. Therefore, their gain is attenuated by

position or orientation as related to the listener. Furthermore, if advanced fea-

tures are enabled, 3D sounds can be attenuated and modified by the environ-

ment, occlusion, etc. A small sampling of sounds with this dimension are:

e player footfalls,

e vehicle noises,

e weapon noises, and

e local environmental sounds (waterfalls, rivers, surf, birds in a stand of

trees, etc.)

11.5.2 AudioDescription and AudioProfile

Throughout the scripts, you will find datablock fields and other bits of code

that take either an AudioProfile and/or an AudioDescription. The purpose

of each of these is to encapsulate sound-specific data so it doesn’t have to

be explicitly stated later. In other words, by using the AP/AD (AudioProfile/

AudioDescription) mechanism, we simplify our life just like when we use

datablocks.

Special Effects

AudioDescription

The job of the AudioDescription datablock is to define how a sound plays. It

answers the following questions.

e Is the sound 2D (it doesn’t attenuate), or is it 3D?

e Ifthe sound is 3D, what kind of sound cones does it have? (See Section 8.7, -

“Audio Emitters.”)

e Does the sound loop?

e If it loops, how many times does it loop and at what intervals does it

repeat?

« What is the maximum gain for this sound?

e What channel does it play on?

AudioProfile

The job of the AudioProfile datablock is to define what sound is played. It

answers the following questions.

e What sound (file) is used for this sound?

e Should this sound be preloaded? Preloading is useful for sounds that would
take a Jong time to load from disk or otherwise might cause a discernible
listening gap if not already in memory.

e What AudioDescription does this sound use?

11.5.3 Sound Channels

All TGE demos and kits come with certain sound channels dedicated to cer-

tain tasks. It is best and easiest to not change the ones that exist, but instead

to add a new channel if needed. The TGE channels are as follows.

e SDefaultAudioType. Channel 0.

e SGuiAudioType. Channel | (dedicated to GUI sounds).

e SSimAudioType. Channel 2.

11.5.4 Using Sound

Because the AudioEmitter mission object uses all the same concepts, we will

not be reviewing the parameters for either ADs or APs in depth. Instead, a

summary is provided in the appendix, and if this is insufficient, a review of

Section 8.7, “Audio Emitters,” should clarify things. For now we'll restrict

ourselves to discussing standalone usage.

TGE provides a complete set of OpenAL functions for playing and manip-

ulating our sounds.

Chapter | |

449

Part Ill

450

Game Elements

11.5.5 new versus datablock for

Profiles/Descriptions

Sometimes, when looking at the examples, you will see audio profiles and

descriptions created using the new keyword, and other times using the data-

block keyword. This may seem arbitrary at first, but it is not.

An AudioProfile or an AudioDescription object created with the new key-

word is nonnetworkable. In other words, these objects cannot be used to play

sounds on remote clients.

An AudioProfile or an AudioDescription object created with the data-

block keyword is networkable. In other words, the server can play sounds

using these on remote clients.

Our focus in this guide is on the single-player usage of Torque, but because

the new vs. datablock distinction is important to understand early, we will

take the time now to look at some examples. In fact, why don’t we use a lesson

to clear up any confusion on the distinction between new versus datablock.

11.5.6 Maze Runner Lesson #21 (10 Percent
Step]—Game Sounds

In this lesson, we will examine the different methods available to create

AudioDescription and AudioProfile objects. This work will subsequently be

used in Section 14.7, “Finishing the Prototype,” to add sound to our game

interfaces and game world.

For our game, we will need AudioDescriptions and AudioProfiles to play

the following sounds.

¢ Splash screen music. We’d like to add some music to our splash screen

when it is shown. This is a nonnetworked nonlooping 2D sound.

¢ Button-over and button press sounds for main menu. We want our but-
tons to provide feedback when the mouse hovers over them and when we
click on them. These are both nonnetworked nonlooping 2D sounds.

¢ In-game music. We’d like some background music while playing our game,
preferably an ambient loop of some sort. This is a nonnetworked looping

2D sound.

e Fireball firing and explosion sound. It doesn’t make much sense for our
fireball blocks to shoot a fireball silently, and the explosion when the fire-
ball collides with something should not be silent, either. These are both
networked nonlooping 3D sounds.

The Audio Descriptions |

In order to create audio profiles, we need to create audio descriptions first.

Why? Because, the AudioProfile object uses the AudioDescription object.

Special Effects

In our list (above), we have three nonnetworked nonlooping 2D sounds, one

nonnetworked looping 2D sound, and two networked nonlooping 3D sounds.

In total, this equates to a requirement for three different audio descriptions.

Nonnetworked Nonlooping 2D Audio Description

new AudioDescription(MazeRunnerNonLooping2DADObj) {

volume = 1.0;

isLooping = false;

is3D = false;

type = SGuiAudioType;

};

Using the new keyword, we have created an instance of AudioDescription

descriptively named MazeRunnerNonLooping2DADObj. An audio profile

using this description has the following attributes.

e Is nonnetworked. It is a normal object, not a datablock.

e Plays at full volume for the channel the sound Is using.

¢ Is nonlooping.

e¢ Is not 3D.

e Is assigned to the $GUIAudioType channel and will thus be attenuated by

changes to that channel.

Nonnetworked Looping 2D Audio Description

new AudioDescription(MazeRunnerLooping2DADObj) {

volume = 1.0;

isLooping = true;

loopCount = -1;

1s3D = false;

type = $GuliAudioType;

};

Using the new keyword, we have created an instance of AudioDescription

descriptively named MazeRunnerLooping2DADOb}. An audio profile using

this description has the following attributes.

e Js nonnetworked. It is a normal object, not a datablock.

e Plays at full volume for the channel the sound is using.

e Is looping.

e Loops infinitely (we assigned -] to LoopCount, but we could have left it

unspecified, as well, since the default value is -1).

e Js not 3D.

e Is assigned to the $GULAudioType channel and will thus be attenuated by

changes to that channel.

Chapter } |

451

Part Il

452

Game Elements

Networked Nonlooping 3D Audio Description

datablock AudioDescription(MazeRunnerNonLooping3DADDB) {

volume = 1.0;

isLooping = false;

is3D = true;

ReferenceDistance = 2.0;

MaxDistance | = 20.0;

type = $SimAudioType;

\;

Using the datablock keyword, we have created aninstance of AudioDescription

descriptively named MazeRunnerNonLooping3DADDB. An audio profile using

this description has the following attributes.

¢ Is networked. It is a datablock.

e Plays at full volume for the channel the sound is using.

e Is nonlooping.

e Js 3D.

e Plays at max volume between 0 and 2 world units and attenuates to nearly

zero at a distance of 20 world units from the source position of the 3D sound.

e Is assigned to the $SimAudioType channel and will thus be attenuated by

changes to that channel.

The Audio Profiles

Now that we have our three audio descriptions, we can create our audio pro-

files. In this case, we need one each for the sounds, but since several of these

sounds, are similar execept for the sound file played, we will only examine

one from each category.

The Nonlooping GUI Sounds {Splash Screen and Buttons)

new AudioProfile (MazeRunnerGGSplashScreen) {

filename = “~/data/GPGTBase/sound/gui/GGstartup.ogg”;

description = MazeRunnerNonLooping2DADOb}j;

);

Using the new keyword, we have created an instance of AudioProfile named

MazeRunnerGGSplashScreen. This audio profile will be used when the

GarageGames splash screen is shown and has the following attributes.

e It plays the GarageGames startup sound from the demo kit. (This sound file

was renamed to GGStartup.ogg from startup.ogg and included with GPGT
base data for your use).

Special Effects Chapter } 1

e It uses our nonlooping 2D AudioDescription object MazeRunnerNon-

Looping2DADOb).

The Looping GU! Sound (In-Game Music]

new AudioProfile (MazeRunnerLevelLoop) {

filename = “~/data/GPGTBase/sound/gui/levelLoop.ogg”;

description = MazeRunnerLooping2DADOb) ;

be

Using the new keyword, we have created an instance of AudioProfile descrip-

tively named MazeRunnerLevelLoop. This audio profile will be used for

in-game music and has the following attributes.

e It plays a short ambient loop provided on the accompanying disk.

e It uses our looping 2D AudioDescription object MazeRunnerLooping2DADObj.

The Networked Sounds (Firebail Firing and Explosion}

datablock AudioProfile (MazeRunnerFireballExplosionSound) {

filename = “~/data/GPGTBase/sound/GenericExplosionSound.ogg”;

description = MazeRunnerNonLooping3DADDB;

);

Using the datablock keyword, we have created an instance of AudioProfile

descriptively named MazeRunnerFireballExplosionSound. This audio

profile will be used for the sound effect attached to a fireball explosion and

has the following attributes.

© It plays a generic explosion sound that is included on the accompanying disk
for your use. This sound is derived from the file “Crossbow_explosion.ogg”
found in the TGE Demo.

e It uses our nonlooping 3D AudioDescription datablock MazeRunnerNon-

Looping3DADDB.

Using The Audio Profiles

All of the above audio descriptions and audio profiles are provided on the

accompanying disk. We will be using them later when we follow the instruc-

tions in Section 14.7, “Finishing the Prototype.” However, the question of use

should at least be addressed. How does one use these new sounds?

The sounds we created are used in three ways.

1. Attached to a GUI control. The button-over and button-press sounds above
will be used by a GUI button control. As you will see in Chapter 12, this

attachment is achieved using GUI profiles. .

453

Part Ill

454

Game Elements

2. Attached to a special effect. Our explosion sound is used by the explo-

sion object. As we saw in Section 11.3, “Explosions,” we can assign an

AudioProfile datablock to the ExplosionData soundProfile field. When
an explosion is created with this datablock, it will automatically play the

sound specified by our AudioProfile datablock.

datablock ExplosionData (FireballExplosion) {

//

soundProfile = MazeRunnerFireballExplosionSound;

//

hi

. Played manually. Lastly, we can play sounds manually. We simply call

alxPlay() and pass it the name or ID of a nonnetworked 2D sound

AudioProfile.

// Play the GG Splash Screen Sound

alxPlay(MazeRunnerGGSplashScreen);

11.6 Special Effects Summary

This short chapter was dedicated to discussing a set of classes that have no

true home but by their nature define or enable a variety of special effects.

These classes included the following.

Debris. The detritus left over by an explosion.

Decals. Textures applied to surfaces to give the impression of bullet holes,
scorch marks, footprints, etc.

Explosions. A special effect dedicated to pyrotechnic displays and interac-

tions with the camera that provide a convincing effect.

Projectiles. A shape not only used to represent the output of weapons, but
that can be used for a variety of other effects.

Sounds. AudioProfiles and AudioDescriptions, used for networked vs. non-

networked sound.

In each discussion, we summarized the features provided by the individual

class, how to use the class alone if possible, and how the class interacts with

other TGE special effects or other classes.

Chapter 12

Standard TGE GUI Controls

12.1 Standard GUIs

In this chapter, we will take a look at what is required to make use of several

standard TGE GUI controls. We will not discuss the usage of every GUI control

provided in TGE but will instead restrict ourselves to discussing the com-

monly used ones. Specifically, we will discuss the following controls.

e Windows, containers, and panes e

* GuiControl

* GuiFrameSetCtrl

* GuiScrollCtrl

* GuiStackControl

* GuiPaneControl

¢ GuiTabBookCtrl e

* GuiTabPageCtrl

¢ GuiWindowCtrl

¢ Backgrounds and borders e

¢ GuiBitmapBorderCtrl

¢ GuiBitmapCtrl

* GuiChunkedBitmapCtrl

* GuiFadelInBitmapCtrl ©

¢ Text

* GuiMessageVectorCtrl

* GuiMLTextCtrl

(© GuiMLTextEditCtrl
* GuiTextCtrl

¢ GuiTextEditCtrl

¢ GuiTextListCtrl

Buttons

¢ GuiButtonBaseCtrl

* GuiBitmapButtonCtrl

* GuiButtonCtrl

* GuiCheckBoxCtrl

¢ GuiRadioCtrl

Menus

* GuiMenuBar

* GuiPopupMenuCtrl

Sliders and Scales

¢ GuiFilterCtrl

*« GuiSliderCtrl

¢ GuiTextEditSliderCtrl

Miscellaneous

¢ GuiCursor

* GuiDirectoryFileListCtrl

* GuiDirectoryTreeCtrl

* GuilnputCtrl

* GuiMouseEventCtrl

* GuiTreeViewCtrl

However, before we leap into the examples, let’s take some time to familiarize

ourselves with some GUI basics.

455

Part lil

456

Game Elements

12.1.1 Interfaces versus GUIs

For the sake of clarity, I will be using four terms while discussing GUIs. The

first term is interface. When I use the term interface, I mean an entire game

interface, such as a main menu, a help dialog, etc. An interface is composed

of one or more GUI elements. The other three terms I will use are GUI, control,

and GUI element(s). I will use each of these interchangeably to keep the dis-

cussion from being too dry. Each of these terms refer to any single GUI class

which may or may not contain other controls. For example, a GuiBitmap, a

GuiButtonCtrl, and a GuiScrollCtrl are all GU] elements, whereas an interface

might be composed of all three of these, plus additional GUI elements.

12.1.2 The Canvas

Since days of old, when working with user interfaces, it has been common to

refer to the base interface’s layer as the canvas. All GUI controls are stacked

(placed in) the canvas. Torque supports a single canvas named, intuitively,

Canvas. The canvas can display two generalized categories of interfaces:

1. Dialogs.

2. Everything else.

In most respects, a dialog is not different from other controls, but it is treated

differently. We will discuss the why and the how of this shortly.

Current Canvas Content

All nondialog interfaces are only displayed if they are the current content of

the canvas. Furthermore, the canvas only has one content at a time. In order

to set an interface as the contents of the canvas, we write a statement like the

following.

Canvas.setContent(myCoolInterface);

In this example, we are making an interface named myCoollnterface the

new (and thus the current) content of the canvas. This unloads the current

content and replaces it with myCoollnterface.

Dialogues and Layers

Most of the time, exchanging the current canvas content is what we want. How-

ever, occasionally, we would like to retain the current canvas content while we

temporarily display another interface over the current one. What we’re talking

about is a dialog. In order to display a dialog, we do the following.

Standard TGE GUI Controls Chapter 12

Canvas.pushDialog(myCoolDialog , 1);

In this example, we are pushing an interface named myCoolDialog onto

Layer 1 of the canvas. The current content of the canvas is retained, as well as

any interfaces already pushed onto any canvas layers. This method allows us

to have as many interfaces open as we need. Note that, if no layer is provided

as the second argument to pushDialog(), the dialog is pushed onto the -

default layer, Layer 0.

Later, we can pop a dialog in three ways.

Canvas.popDialog();

// or

Canvas.popDialog(myCoolDialog);

// ox

Canvas.popDialog(1);

Replacing the

current content of

the canvas does not

affect dialogs. Dialogs

are content that float

over the canvas’s

current contents.

 The first popDialog() will pop the last interface that was pushed, which in

this case would be myCoolDialog. The second popDialog() will do a lookup

on myCoolDialog and pop it if it is found. The third and last popDialog ()

will pop all interfaces in Layer 1. I repeat, all interfaces in Layer 1. This is a

nice way to pop multiple stacked dialogs at the same time.

Canvas Extent vs. Screen Size

The canvas is in effect a boundless entity that extends beyond the visible

screen. The “0 0” coordinate of the canvas is merely a reflection of the “start-

ing” position of the screen (upper-left corner), and the extent is a reflection

of the width and height of the screen. It is completely legal to position GUI

elements outside the visible bounds of the screen. In fact, this is true of all

controls, not just for the canvas. All controls will clip the parts of their chil-

dren that are outside the control’s own visible bounds.

12.1.3 The Structure of a .gui File

Each interface that we make the content of the canvas and each interface that

we push onto the canvas is a separate entity. For instance, we may have any of

the following interfaces: splash screen, main menu, credits, settings dialog(s),

help dialog(s), play GUI, etc. Each of these interfaces exists individually as a

hierarchy of GUI controls, stored in a separate .gui file. The .gui files can be

created by hand, by script, or with the GUI editor. The Torque standard is to

have one interface definition per .gui file, and the general organization of such

a file is as follows.

457

Part tl

458

Game Elements

1. An optional block of code.

2. The definition of the interface between two comment lines.

//--- OBJECT WRITE BEGIN ---

//--- OBJECT WRITE END ---

3. A second optional block of code.

A GUI file with just the sections delimited would look like this:

// Optional code block #1

//--- OBJECT WRITE BEGIN ---

// Interface definition

//--- OBJECT WRITE END ---

// Optional code block #2

The lines in bold are optional.

Optional Code Block #1

This optional block of code can be added by hand after generating and saving

an interface file, using the GUI editor. Normal bits of code that go here are:

« GUI profile(s) used in subsequent GUI definitions,

e onAdd() callback definitions for subsequent GUI elements, and

e miscellaneous code and global variables.

Interface Definition

This required block is generated by the GUI editor or by hand. If generated by

the GUI editor, it will be delimited by two (optional) comment lines and look

something like the following.

//--- OBJECT WRITE BEGIN ---

new GuiChunkedBitmapCtrl(parentGUI) {

horizSizing = “width”;

vertSizing = “height”;

position = “0 0”;

extent = “640 480”;

new GuiControl(childGUI) {

//

new GuiTextCtrl (grandChildcur) {

//

h;

Standard TGE GUI Controls

i
//--- OBJECT WRITE END ---

The comment lines (highlighted) allow the GUI editor to find the interface

definition and preserve the optional codeblocks surrounding it in the case that

we later reload our GUI with the editor and edit it. Yes, both code blocks will

be preserved.

If we look at the above example skeleton, we will see that there is one

parentGUI (named this way for the sake of the example) which can then have

child GUIs, grandchild GUIs, etc., inside it. We’ll talk more about the design of

the GUI definition shortly, but let’s first address the second code block.

Optional Code Block #2

We can optionally-hand edit the file and add a second block of code after the

interface definition. Normal bits of code that go here are:

e onWake(), onSleep(), and onRemove() callback definitions as well as

any other callbacks that might be associated with the prior GUI elements,

and

e miscellaneous code.

OK, we’re doing well. We know a little bit about the canvas, and we

understand the structure of a .gui file. Now, let’s talk about the general struc-

ture of an interface.

General Design of Interfaces

When building an interface, I suggest using the following steps.

1. Select a control to be the base container for this interface. Good choices are

' GuiControl, GuiBitmapCtrl, or GuiChunkedBitmapCtrl (among others).

2. Position the base GUI at “0 0” and make the extent equal to that of the

canvas.

3. Use a horizSizing of “width” and a vertSizing of “height”. This

last step is very important because we want our base GUI to cover the

entire visible screen. The extent is not so important as the horizSizing

and the vertSizing. (The GUI editor will automatically do this and the

prior step for you when you create a new interface: File > New GUI).

4. Now, add all other GUI elements you wish to have into your selected base

GUI.

Chapter 12

459

Part Ill

460

Game Elements

new GuiChunkedBitmapCtrl (MyCoolInterface) {

//

horizSizing = “width”;

vertSizing = “height”;

position = “0 0”;

extent = “640 480”;

//

new GuiWindowCtrl() {

//

h;

//

new GuiWindowCtrl() {

//

\;

Well, we've gone on for a bit now, and I haven’t told you what makes

a nondialog different from a dialog. The short answer is nothing. Yes, that’s

right. In theory, there is no difference between a nondialog and a dialog except

the way we choose to display them. In practice, however, there is usually one

more important difference—how they capture inputs. To understand this, we

need to explore how GUIs capture inputs in general.

In order to understand how inputs are captured by GUI elements, we

need to explore the following concepts: layers, first responders, focus, and

modality.

How a GUI Captures Inputs

Layers

Unfortunately, the term layers has been and is used regarding dialogs. We are

not currently discussing dialog layers. Instead, we are discussing the more

general concept of layering.

The canvas can be considered to be the bottom layer of the contro] stack.

Each visible control is stacked onto this canvas, making a “layer.” Those controls

on the bottom are rendered first, and those on the top are rendered last. Thus, at

the end of any rendering cycle, the topmost GUI controls will have rendered over

all other elements below them, properly occluding and masking them.

Now, recall our discussion from Section 9.5 regarding I/O processing

order. Input events are passed from the operating system to the Torque plat-

form code layer, which then passes the inputs to:

Standard TGE GUI Controls Chapter |2

1. the GlobalActionMap, then to

2. the Canvas, then to

3. any active (nonglobal) ActionMaps.

Imagine that the the mouse input events (the ones not captured by the GlobalAc-

tionMap) are like marbles falling onto our interface. Each marble will fall from

the location of the cursor and hit the first GUI it encounters. This is the first GUI

that will be given an opportunity to capture and to use the mouse event.

If a control does nothing with the event, it can either allow the marble

to “fall through” until a GUI lower in the stack finally uses the event, or the

event can immediately be sent to the ActionMap stack.

For a modeless control (we will define modality below), the event con-

tinues to fall through. For a modal control, the uncaptured event is passed

directly to the ActionMap stack. Notice that I did not say modal interface.

Generally, you can consider an interface to be modal if any GUI in the

interface is modal, but in practice the best way to do this is to make the base

layer of the interface modal and to allow all the higher layers to behave nor-

mally (i.e., be modeless).

Keyboard events are a little more tricky. Because there is no parallel to the

“mouse pointer location” idea, we need to discuss a new concept.

First Responders)y———~

If you are using

version 1.4 or later

of the engine, this

discussion does not

apply. The concept

of first responder has

been deprecated in

lieu of a more standard
focus-based system.

So, if you are not using

version 1.3 or prior,

skip ahead to “Focus.”

Because a keystroke comes from no specific physical location, there needs

to be a mechanism that tells TGE which GUI to send the keystroke to. This

concept is called first responder.

Some controls wil] automatically become first responder, but sometimes a

control needs a little help (or discouragement). For example, in the case where

there are two controls that are on the same layer and both want to be the first

responder, the question arises, “Which of these will be first responder?”

The first responder will be:

1. the control that was first responder on the last processing pass, or

2. the control that is made first responder by the method makeFirst-

Responder (), or

3. the contro] that is made first responder as the result of a mouse-click or

TAB transition.

Note that some controls will take back the first-responder role even when

another control has been clicked.

Focus

A GUI can have what is called focus. This term implies that the control is

visible and active. However, the main thing to know about focus is that the
461

Part ill

————

If you are using

version 1.4 or later

of the engine, this

discussion does not
apply. The concept

of modality has been

deprecated in lieu

of a more standard

focus-based system.

So, if you are not using
version 1.3 or prior,

skip this.

462

Game Elements

control that has focus and is first responder will be the one to receive key-

board inputs.

Mouse movements and clicks can change the current focus, so how do we

force a GUI to retain focus regardless of the mouse position/action?

Modality

The fourth and final concept we need to wrangle with is modality. Modality

. is usually discussed in the same breath as dialogs, but it is a term that can

- be applied to any control. Namely, a control can be modeless, or it can

be modal. Furthermore, a modeless GUI does not attempt to hold onto

the focus. It will freely give up the focus to whatever other GUI wishes to

take it. The modal GUI is less friendly, however, and once it has the focus,

it does not relinquish it until its purpose is served and it chooses to release

focus. All controls are modeless by default, although some do actively seek to

attain first-responder status (GuiTextEditCtrl, for one), which is not the same

as being modal.

We can retain focus either by:

1. making our GUI modal (not very friendly and not suggested unless truly

necessary),

2. covering all other GUIs such that they do not have the possibility of getting
focus (we can easily do this by placing the GUI control that we want to

have the focus in a GUI control that covers the entire canvas), or

3. forcing first-responder status by using the makeFirstResponder ()
method call.

Please note that sometimes you need to make a control be first responder, and

sometimes you need to force a control to not be first responder.

Wow! We have come a long way. We now have at least a passing under-

standing of some GUI concepts. Still, we have a way to go before discussing

individual GUI elements. Now, let’s talk about some more advanced topics.

12.2 GUI Profiles

Similar to the concept of datablocks for shapes, we have GUI control profiles

(GuiControlProfile) for GUIs. These are unique objects that are instantiated on

the client and used repeatedly in the creation, initialization, and use of GUIs.

They save us having to constantly redefine common attributes on a GUI-by-

GUI basis. Like datablocks, they provide a single location from which to draw

common attributes, but this space is not static (like a datablock).

Standard TGE GUI Controls

The syntax for a GuiControlProfile is as follows.

new GuiControlProfile (GuiProfileName [: parentProfile]) {

field_0 = value;

field_N = value;

[dynamic field_N = value;]

i

Like datablocks, each GuiControlProfile is expected to be unique; thus, creat-

ing a second profile with the same name as a prior one will in effect override

it. However, to be safe, always delete a profile if you are going to redefine

it. Also, do not delete a profile that is currently in use, or you will crash the

engine.

Like datablocks, we can inherit (copy) from a previously defined profile if

we so choose.

Not all fields that can be defined in a GuiControlProfile are used by every

GUI control, nor are they all used in the same way. We are, of course, free to

add our own dynamic fields to any profile at any time.

12.2.1 Visual Attributes of GUI Control Profiles

As you would expect, the majority of the fields in GUI control profiles are for

enabling and/or modifying visual aspects of a GUI. It should be said once

more that not all of these values are treated equally between GUIs, and experi-

mentation will be necessary for controls not documented here. However, after

reading the remainder of this chapter, you should have a reasonable idea of

what to expect when you use these fields.

Bitmap

There are several controls that use a bitmap. Thus, it makes sense that the bit-

map should be specified here. This simplifies GUI creation and easily allows

us to have controls in different places all using the same graphics file.

Unlike bitmaps used elsewhere in Torque, GUI bitmaps may have any

reasonable dimension and need not be sized as a power of two.

new GuiControlProfile (usesABitmapProfile) {

// No need to specify suffix

bitmap = “./some_path/somebitmapname”; |

he

Chapter 12

463

Part lil

464

Game Elements

Borders

All controls can have a border. The border parameters in a GuiControlProfile

are as follows.

*¢ border. This integer value specifies the control-specific border type, of
which there are up to five possibilities:

* OQ—disabled, and

« 1, 2, 3, 4—control-specific implementation.

® borderColor. A three-value integer vector containing the RGB colors for

a normal border.

¢ borderColorHL. A three-value integer vector containing the RGB colors
for an “is highlighted” border. .

¢ borderColorNa. A three-value integer vector containing the RGB colors
for a “not active” border.

® borderThickness. This integer field determines the thickness of a border
in pixels.

new GuiControlProfile (aintGotNoBorderProfile) {

// Never rely on defaults, turn it off yourself!

border = false;

bi

new GuiControlProfile (pencilThinBorderProfile) {

border = true;

borderColor = “O 0 0”;

borderColorHL = “0 0 0”;

borderColorNA = “0 0 0”;

borderThicknes = 1;

);

new GuiControlProfile (rainbowBorderProfile) {

border= true;

borderColor = “255 0 0”;

borderColorHL = “0 255 0”;

borderColorNA = “0O 0 255”;

borderThicknes = 2;

\;

Cursors

What is a cursor, you ask? What we're talking about here is that little blinky

thing that shows up in text boxes and the like. We can colorize it with the

cursorColor field.

Standard TGE GUI Controls Chapter |2

new GuiControlProfile (angryRedBlinkyThingProfile) {

cursorColor = “153 0 0%;

);

Background/Fill Colors and Opacity

If we’re not using a bitmap as our background, we will need to decide what

color it should be. Thus, TGE has provided the following fields.
You may completely

disable backfill by

setting the opaque

field to false. If this

field is set to true,

then the backfill

will be rendered

with the specified

translucency.

 e £111Color. This contains the four-element integer vector containing the
RGBA values for a control's background.

e £i11ColorHL. This contains the four-element integer vector containing
the RGBA values for a control's background when it is highlighted.

e fillColorNA. This contains the four-element integer vector containing
the RGBA values for a control's background when it is inactive.

Notice that the background color vectors have four elements, not three.

This means you can define an alpha channel and make an element trans-

lucent or even transparent.

new GuiControlProfile (aTranslucentPurplishWindowProfile) {

opaque= false; // Enable translucency/transparency

fillcolor = “153 102 255 128”; // 50% translucent

fillColorHL = “153 102 255 200”; // 22% translucent

fillColorNA = “153 102 255 64”; // 75% translucent (almost transparent)

i

Fonts

Images can do a lot for transmitting ideas, but we will often have to break

down and actually write something. That is, we’ll have to use words to make

ourselves clear. Because nobody likes to be boring, it makes sense to have

some way to make our text a little more interesting than the default Arial font.

TGE supplies myriad fields to enable text coloring. Please be aware that some

of these field names are aliased, so the last definition is the definition that will

be used for both (Table 12.1).

For convenience, I have included the color codes in Table 12.1. Why?

Well, if you recall from earlier when we discussed the console in TorqueScript,

I mentioned that you can use escape sequences to color text. This colorization

applies to the console and many of the text controls.

So we’ve learned to colorize our text, but can we select a typeface and

point size, too? You bet! We can select our font typeface with the fontType

field and determine the point size of the font with the fontSize field.

465

Part tll

Table 12.1.

Fields for text coloring.

Ooo
If you are working
with a version of TGE

prior to 1.4, the UFT

extension is GFT,

instead. Also, versions

prior to 1.4 do not

support Unicode. In

either case, you may

install custom fonts in

your game by doing

the following.

1. Be sure the font is

installed on your

system.

2. Create a
GuiControlProfile
specifying the font

you want to use at
the type size you

want to use it.

3. Create a control

using this profile.

4. Run your game.

At this point, if the

font shows up, you

are done. Now, just

be sure not to delete

the UFT/GFT file, and

you can use this font
on any system, even if

the user doesn’t have it

installed. TGE will use

the generated one. f#
466

Game Elements

colors[0] fontColor \co Three-element integer vector
defining default text color.

colors[(1] fontColorHL \el Three-element integer vector
defining highlighted text color.

colors[2] fontColorNA \c2 Three-element integer vector

defining inactive text color.

colors [3] fontColorSEL \c3 Three-element integer vector

defining selected text color.

colors [4] fontColorLink \c4 Three-element integer vector
defining hyperlink text color.

colors [5] fontColorLinkHL \c5 Three-element integer vector

defining selected hyperlink text
color.

colors[6] -- \c6 Three-element integer vector

defining user-defined text color.

colors[7] -- \c? Three-element integer vector

defining user-defined text color.

colors [8] -- \c8 Three-element integer vector

defining user-defined text color.

colors[9] -- \c9 Three-element integer vector defining user-defined text color.

fontType (An Aside)

I know that when I first picked up TGE, it was not at all clear what my choices

were for fonts. I poked around for a bit and found some files with a GFT suffix

(see “~\common\ui\cache\”). The strange thing was that, when I ran TGE

on different platforms, I found different files in this directory.

Huh? Well, a little more research and reading showed that the GFT files

are a side effect of a successful font build; i.e, as I specified new fonts, if the

build was successful, | would find a new GFT file with a matching name.

Because | know it is nice to have a reference, I have supplied a list of com-

monly installed fonts. Select a font from the following list of 47 common fonts

and try it.

Arial

Arial Black

Arial Bold

Arial Bold Italic

Anial Italic

Comic Sans MS

Comic Sans MS Bold

Courier

Courier New

Courier New Bold

Courier New Bold Italic

Courier New Italic

Standard TGE GUI Controls

Georgia Bold Italic

Georgia Italic

Impact

Impact Italic

Lucida Console

Lucida Sans Unicode

Microsoft Sans Serif

Modern

Palatino Linotype

Palatino Linotype Bold

Palatino Linotype Bold Italic

Palatino Linotype Italic

Franklin Gothic Medium Roman

Gautami

Georgia

Georgia Bold

Script

Small Fonts

Chapter }2

Tahoma

Tahoma Bold

Times New Roman

Times New Roman Bold

Times New Roman Bold Italic

Times New Roman Italic

Trebuchet MS

Trebuchet MS Bold

Trebuchet MS Bold Italic

Trebuchet MS Italic

Tunga

Verdana

Verdana Bold

Verdana Bold Italic

Verdana Italic

For example, let’s try one of my favorites, Tahoma Bold, at 10 points.

new GuiControlProfile

fontType

fontSize

}

“Tahoma Bold”;

10;

(sweetTahomaBoldProfile) {

If this works, the first time we try to use this profile, a new UFT file named

“Tahoma Bold_10.uft”, will appear in our font cache directory. If the font

failed to get constructed, TGE will try to use Arial instead.

You know, Tahoma Bold isn’t really all that legible on the screen at only

10 points. In fact, it may not be legible at all on a Macintosh, which brings up

the concept of target platforms and their variances.

Platform Variances

The folks who designed TGE had it all together the day they designed the text-

formatting features. Someone realized that different platforms have different

standard screens with different aspect ratios and different “expected” fonts.

Thus, a way was needed to target profiles to platforms. That targeting is pro-

vided with the $platform variable. This global variable is set by the engine if

it can determine the current platform type. It can take the following values.

e macos. It's a Macintosh, or at least it's running OSX or OS9.

e windows. Some version of Windows.

467

Part It

468

Game Elements

e X86UNIX. Unix.

e Linux. Linux.

e OpenBSD. OpenBSD.

e Unknown. This means that TGE could not identify the OS.

Honestly, I’m sure that the $p1atform variable wasn’t created with only fonts

in mind. In fact, the only time we really care about this for fonts is when we’re

dealing with the Macintosh. Those guys just have to be different; or perhaps

it’s the PC guys who are different? Whatever the case, fonts on the Mac are

quite different from those on PCs, due to several factors, which include strange

aspect ratios and, more importantly, expectations. OSX (and OS9 before it)

uses a different font set from those found under Windows.

So, how do we make our fonts Mac and PC friendly? Like this.

new GuiControlProfile (makeAMACGuyHappyProfile) {

fontType = (S$platform $= “macos”) ? “Courier New”

“Lucida Console”;

fontSize = (S$platform $= “macos”) ? 14 : 12;

;

Font Not Found?

In case you missed it above, if TGE cannot build your font, it will subsitute

Arial at the point size you selected. Failing that, the engine will fail out, com-

plaining about Arial fonts needing to be on the system. Sheesh! Really though,

I’ve never seen it happen yet.

Unicode

Versions 1.4 and later support Unicode fonts, as well. Unicode is a method of

encoding keyboard keys to corresponding numeric values. ASCII is the old-

fashioned way of doing this, but with the world rapidly growing smaller and

with a number of non-Latin-based alphabets being used on keyboards today,

a new encoding was and is required. Thus Unicode was born.

In short, if you want to penetrate a foreign market, one of the things you

must be able to do is match that market’s keyboard scheme. TGE is ready.

Text Formatting

We're doing pretty well so far. We’ve done a lot to get our GUIs looking nice

and our fonts looking interesting. However, what happens if we try to use

some text and it doesn’t align nicely in the control. Using spaces to justify/

space our text isn’t a very appealing solution. Does TGE help us out? Yes, it

does. There are two fields that deal with how text is formatted.

Standard TGE GUI Controls Chapter |2

The first is the justify field, which can take the following values:

e left—left justified,

e right—right justified, and

¢ center—centered.

Then, for those cases where it isn’t the justification we care about so

much as the fact that the text rides too close to the edge, we can adjust our

offset with the textOffset field, which takes a two-element vector defining

the x-y offset of the upper-left corner of the first text character in pixels.

new GuiControlProfile (centerMyTextProfile) {

justify = center;

i

new GuiControlProfile (slightOffsetTextProfile) {

// Offset 4 pixels from left and 6 pixels from top

textOffset = “4 6”;

Me

We’ve talked about how GUI control profiles contribute to the look of a GUI;

now let’s talk about how they affect behavior.

Autosizing

There are a few controls that may need to resize either their heights or widths

to fit their parent control. Among these are the GUITextCirl, GuiTextList-

Ctrl, and GuiMLTextEditCtrl. To declare this functionality, TGE provides two

Boolean fields.

¢ autoSizeHeight. Allows the control to resize its height to accommodate Just setting these
multi-line/row contents. values to true does

° autoSizeWidth. Allows the control to resize its height to accommodate | "0t guarantee the
: behavior. These fields

- multi-character/column contents. .
only work if the control

. can behave in this
Key and Mouse Attributes way. For example,

There are a few key and mouse attributes that I should at least touch upon. setting these ona
label (GuiTextCtrl}

* mouseOverSelected. If this is set to true, the control will be selected would do nothing,

when the mouse hovers over it. but setting them on

° returnTab. If this is specified, the control will generate a tab event when 2.2 text edit control
it is in focus and the ENTER key is pressed. (GuiTextEditCtr!)

: . ; . would work.
¢ cankeyFocus. If true, this control can be given keyboard focus.

Part Ill

470

Game Elements

Modality

Again, if you are using version 1.4 or later, this concept is deprecated. The

following only applies to versions 1.3 and prior.

We discussed modality above. Here is where we learn how to enable

it. Simply set the Boolean field modal to true, and your control should be

modal. My suggestion is that most controls have this set to false unless it

really makes sense to force the user to deal with a GUI explicitly and first.

Input Restrictions

Besides the often onerous restriction of a modal GUI, what other restrictions

are there? Well, just one. We can restrict text-entry fields to allow only numeric

input by setting the Boolean field numbersOnly to true.

Audio Attributes

Because it would be a real bummer to have to define the sound for each

and every button, TGE supplies two fields to do so in a GUI control profile

instead.

e soundButtonover. Play the sound represented by this AudioProfile when

the mouse moves over this button.

* soundButtonDown. Play the sound represented by this AudioProfile when

the button is pressed.

12.3 GuiControl—the Root GUI Class

GuiControl is the root class to all GUI controls and thus provides many fields and

console methods. When it is used at all, it is normally used as a container for other

controls, as it has very few rendering features and does nothing with inputs.

12.3.1 Profiles

Nearly all controls require a profile. Furthermore, every time a control wakes

up, it looks for its profile. If for some reason no profile is specified, the control

will do its best to find one, using the following rules.

1. Use the profile specified by the user unless it is equal to the null string, *”.

2. Try to find a profile whose name is the first part of the control class name

+ the word profile (e.g., GuiButtonCtrl would look for GuiButtonProfile).

3. Use GuiDefaultProfile (a profile with this name must always be created,

and always before other profiles are created).

Interestingly, profiles can be changed at any time. Also, the contents of a

profile (i.e., the fields) can be modified from script.

Standard TGE GUI Controls

In order to set the original profile, assign a value to the profile field. This

value can be the null string. If it is, the engine will search for a profile and

replace the null string with the name of the first matching profile found.

To change a profile after a control is created, call the setProfile()

console method. The control’s profile field can generally be updated using

direct assignment, but caution and plenty of verification are in order if you

intend to use this method.

// Creation

new GuiControl(myTestControl) {

profile = someProfile;

};

// Changing by console method

myTestControl.setProfile(someOtherProfile);

// Changing by assignment (not suggested)

myTestControl.profile = someOtherProfile;

12.3.2 Extents and Position

All controls have two extents, extent and minExtent. The former is a two-

element integer vector defining the control’s initial width and height. The

latter (not actually used in all controls) is also a two-element integer vec-

tor that specifies the minimum width and height dimensions the control can

assume. If we did not have minExtent, a control could be scaled down to

a point where it was too small to use or view, either because the parent

was resized, or because we resized the control ourselves using the mouse.

minExtent prevents either of these cases.

position, also a two-element integer vector, is the initial x and y coordi-

nate of the upper-left corner of the control.

new GuiControl(myTestControl2) {

position = “10 20”; // start at < 10, 20 >

extent= “100 200”; // Start 100 pixels wide, 200 pixels high

minExtent = “80 80”; // Do not allow to shrink below 80x80 pixels

ye

12.3.3 Position and Sizing

Because the canvas may have various dimensions (as a result of user-selected

resolution changes and/or GUI editor resizing), several ways are supplied to

modify/maintain the sizing of a control. There are two fields, horizSizing

and vertSizing. The settings and behavior of both of these fields are

Chapter [2

471

Part tl

472

Game Elements

thoroughly covered in Section 3.14, “The GUI Editor.” Please refer there for

how these two fields interact and control the sizing of a control.

To retrieve the current position of the control, we can use the

getPosition() method, which returns a two-element integer vector con-

taining the current position of the control’s upper-left corner. Then, to mod-

ify the position and/or the size of this control, we can use the resize ()

method.

// Move this control down 10, left 10, and resize it to

// “100 100”

Sposition = Stest.getPosition();

$newX = getWord(Sposition , 0) + 10;

SnewY = getWord(S$position , 1) + 10;

Stest.resize(SnewX , SnewY , 100 , 100);

12.3.4 Initial Visibility

If we so choose, we can cause a control to start off invisible (not rendered).

Just set the Boolean field visible to false. By default, it is set to true.

12.3.5 Accelerators

Often, it is nice to be able to activate a control via some combination of

key presses. To facilitate this, TGE GUIs support accelerators. By setting the

accelerator field to some combination of modifier(s) + key, we can enable

access to buttons and many other controls from the keyboard.

new GuiButtonCtrl(myAcceleratedTestButton) {

// Ctrl+Alt+X activates this button

accelerator = “Ctrl Alt xX”;

ye

Modifiers

Modifiers can be CTRL, SHIFT, or ALT.

Keys

Keys include the following: F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, Fll, F12, A,

B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, 5S, T, U, V, W, X, Y, Z.

12.3.6 Commands and $thisControl
Many controls will wish to execute a command when activated, and a smaller

set may need an alternate (secondary) command for other events. These com-

Standard TGE GUI Controls Chapter 12

mands can be small scripts or just calls to functions. They are declared as

follows. ,

new GuiButtonCtrl(myTestButton) {

command = “doSomething();";

altCommand = “doSomethingElse();";

};

Be aware that any control that executes a command will first set the global

variable $thisControl to the ID of the calling control. For example, when a

button is clicked, it will do the following.

1. Set SthisControi to the ID of the button.

2. Execute the script specified by command.

Only the following controls use altCommand.

¢ GuiSliderCtrl

GuiTextCtrl

GuiTextEditCtrl

e GuiTreeviewCtrl

12.3.7 Variables

Interestingly, each control can have a variable associated with it. How it uses

this variable is up to the control, but normally the variable contains the cur-

rent value of this control.

Stest = new GuiButtonCtrl(testButton) {

variable = “testButtonValue” ;

Me

// Access this variable like this:

echo (“testButtonValue == ”, StestButtonValue);

12.3.8 Becoming First Responder

There will be times when we want a control to capture keyboard inputs. To have

a control start catching the input, we must call the makeFirstResponder ()

method with a Boolean value of true. To make it stop, simply call this method

with a value of false. Also, don’t forget that this concept only applies to ver-

sion of TGE prior to 1.4.

// Capture keyboard inputs

testButton.makeFirstResponder(true); 473

Part Ill

474

Game Elements

12.3.9 Current and Subsequent Visibility

We know how to tell the control whether it should start off visible, but what

if we want to change this? Use the setVisible() method and pass it either

true or false based on our needs.

testButton.setVisible({ false); // Hide the button

We can also check for visibility with the isVisible() method.

echo{“This button is”, (testButton.isVisible() ? “ ”

“not ”), “visible”);

12.3.10 Awake and Active?

A control can be awake or asleep, active or inactive. These modes can be

interpreted as follows.

e (isAwake() == true). Self or parent is current content of canvas or

canvas layer.

e (isAwake() == false). Self or parent is not current content of canvas

or canvas layer.

e (isActive() == true). Currently enabled.

¢ (isActive() == false). Currently disabled.

In addition to checking the status of active, we can set it with the

setActive() method.

testButton.setActive(false); // Disable this button

12.4 GUI Console Methods, Callbacks,

and Scoping

GUIs and GuiControlProfiles, like all TGE objects, support console methods

and callbacks.

12.4.1 Console Methods for GuiControl

and Children

You may not find much use for this, but just in case, I want you to know that

you can in fact define console methods on GuiControleProfile objects. How-

ever, you can only define console methods for GuiControlProfile objects in

either the namespace GuiControlProfile:

Standard TGE GUI Controls Chapter | 2

SprofileA = new GUIControlProfile(testProfileA) {

\\ eae

bs

function GUIControlProfile::testit(Sthis) {

echo (“GUIControlProfile::testit(”,%this, “)”);

}

SprofileA.testit();

or in the SimObject namespace (GuiControlProfile’s parent is SimObject):

function simObject::testit2(%this) {

echo (“simObject: :testit(2”,sthis,“)”);

}

SprofileA.testit2();

The class, className, and superClass keywords are not recognized and

cannot be used to extend the namespace of GuiControlProfile objects.

12.4.2 Console Methods for GuiControlProfile

and Children

More useful to us than console methods for GuiControlProfile are console

methods for GuiControl and all its children. GUIs have a lot of callbacks and

you'll find it very useful to be able to scope console methods to specific object

instances. Fortunately, the normal scoping rules and methods apply to GUI

controls. In other words, we can scope methods to GuiControl and its parent

classes, and we can scope to the object’s name.

new GuiBitmapButtonCtrl (LessonsButton) {

S/

bi

function LessonsButton::test(%this) {
echo(“LessonsButton::test(” @ %this @ “)”);

.

Thus, typing

LessonsButton.test ();

475

Part Ill

476

Game Elements

will print the following in the console.

LessonsButton: : test (LessonsButton)

If you need a review of the scoping rules, go back to Chapter 4, “Introduc-

tion to TorqueScript.” If you want to know what the callbacks are for different

GUI controls, take a peek at Appendix A.4, “GUI Controls Quick Reference.” I'll

be giving some code samples below to handle certain useful GUI callbacks.

12.5 GUI Skinning

Several controls offer the additional ability to “skin.” In effect, we can create

a graphic image or array of images that will then be used to cover the con-

trol. This offers us a simple means of giving our game GUIs their own flavor.

However, this power does come at a price. Specifically, we need to understand

how this skinning graphic is laid out and how we create it. Don’t worry; it’s

not that hard.

12.5.1 Bitmap Arrays

Almost every skin we will use is a single graphic file that has been laid out

in some sort of an array (skin elements organized in rows and columns). The

purpose of the rows and columns is determined on a per-control basis, but all

of these arrays follow the same rules.

General Rules

These are the general rules to be followed.

e The format of the graphic file must be nonlossy and support an alpha

channel (in theory you can do some controls with a 24-bit BMP (no alpha-
channel) or a JPG (lossy), but it is likely this won't work well). PNG is the

preferred format.

e The graphic file does not need to be sized as a power of two. Any (reason-

able) ratio will do.

e All elements must be separated by one pixel at their nearest point.

e The first pixel row of the graphic contains no elements, just a single color.
This color becomes the “array-divider color.” The array-divider color is
used by Torque to identify rows and columns.

e All arrays of subelements are arranged left-to-ight and top-to-bottom;
i.e, if there is some element numbering implied, the upper-left element is
zero and the lower-right element is N - 1, where N is the total number of
elements.

Standard TGE GUI Controls

Column Rules

These are the rules to be followed for columns.

The first column of elements must align with the left edge of the array.

Elements in a column (excluding the first column) do not need to left-align

with those elements in the rows above or below them.

Row Rules

These are the rules to be followed for rows.

The first row of elements starts one pixel from the top of the graphic.

All elements in a row must top-align with al] other elements in that row.

All elements in a row must be one pixel apart at their nearest point in the

row; 1.e., shapes may be irregular, but the extents of elements must be one

pixel apart.

The rightmost element in a row does not need to align to the edge of the

graphic; i.e., there can be empty space on the right of a row.

The bottommost row does not need to align with the bottom of the graphic.

Again, there can be buffer space.

Now, it may seem like this is a lot to remember, but it really isn’t that bad,

and you’ll have examples to follow. Figure 12.1 shows a simple example and

a more complicated one.

Most of the difficulty in creating a skin comes from following the prior

rules and in knowing the layout requirements for the current control. I will

give a layout for each skinnable contro] below so you know what you’re look-

ing at when you make your own, but here I’d like to stress some points that

will make your life easier.

e Always use PNG files if you can. These support alpha channels, are reason-

ably sized, and you don’t have to worry about artifacts.

e Make the subelements separately, then assemble the array as layers. It will

be much harder to make your elements if you try to make them all in one
graphic layer.

Make the subelements at the maximum resolution you expect them to be

displayed, unless they require a specific sizing (the bitmaps for GuiBitmap-
BorderCtrl and GuiWindowCtrl are sensitive to scaling).

Use pure red (255 0 0) as your array-divider color if you can, or use-another

color that is not present in the element. You can use a tool to analyze the

color mix of your subelements. Then, just pick a color that is not in the
controls already. This is not a strict rule, but it makes designing skins easier

if you follow it.

Chapter |2

Figure 12.1.

Examples of bitmap arrays.

a. Check box array (so

simple...).

[Vi
["
V

b. Scroll array (Ewww...).

&

v

477

Part III

Many controls require

the presence of a

bitmap in their profile.

If you use a profile

that does not have a

bitmap for a control

that requires one, the

engine will not render

the control. Be sure

to include bitmaps in

control profiles that

require them. You

were warned.

Table 12.2.

» Setting up rows and
columns.

position “100 100”

extent “300 300”

columns | “0 100 200”

rows “0 100 200”

478

Game Elements

e Do not use transparency as your array-divider color unless you absolutely

have to. No bitmap arrays require this.

e Never use translucency (alpha lower than 1.0 and higher than 0.0) as your

array-divider color, period. I mean it.

e More? Sure, but I’m sure that many people reading this are more artistically

inclined than I am, so I'll stop here.

12.5.3 Enabling Skinning

In order to enable skinning for controls, we use two fields in the GuiControl-

Profile.

e hasBitmapArray (deprecated in version 1.4+). Boolean value enabling

skinning.

¢ bitmap. Path to the bitmap skin to use to theme this control.

new GuiControlProfile (usesBitmapArray) {

hasBitmapArray = true;

bitmap= “path to bitmap array file”;

he

Now, finally, let’s talk about the specific GUI controls.

12.6 Container Controls

This first category of controls contains the standard container-type controls.

Don’t forget, though, that all controls can act as containers to other controls.

12.6.1 GuiFrameSetCtrl

This control is used to automatically or manually frame any number of child

controls, in regular row-column format.

The first time you try to use it, it may seem a little odd, but once you

understand the rules by which it operates, you’ll be using it for all kinds of

tasks.

Setting Up Rows and Columns

To use this control, simply place it and give it an initial extent. Then, to divide

the control into rows and columns, simply specify the starting position of each

column in the columns field and each row in the rows field. For example,

we could make a 3 x 3 matrix of cells where edch cell is 100 by 100 pixels, by

using the field settings shown in Table 12.2.

Now, we need to add some children.

Standard TGE GUI Controls

Inserting Controls

In this example, we’ll just use nine buttons. To add these buttons, simply

select your new GuiFrameSetCtrl and add nine GuiButtonCtrl controls as chil-

dren. If you pay attention, you will see that the controls are added left-to-right

and top-to-bottom; that is, the buttons are (automatically) added in the fol-

lowing order:

e button0 > < Column0O, Row0 >

e button! > < Column1,Row0O >

e button2 > < Column2, Row0 >

e button3 > < Column0, Row 1 >

e button 8 > < Column 2, Row 2 >

So, what happens if we remove a control?

Removing Controls

If we remove a child control, all of the children will shift as required to fill

the empty slot. Furthermore, newly added controls will go at the end of the

list. Just keep this in mind if you are making and destroying these controls

dynamically.

How Borders Work

This control will allow you to specify dragable borders between the rows and

column. In order to do this, specify these fields shown in Table 12.3.

borderWidth Width of borders in pixels.

borderColor Color and opacity of borders.

borderEnable Enable border color rendering. Can be “alwaysOn”,

“alwaysOff”, or “dynamic”.

borderMoveable | Enable border dragging. Can be “alwaysOn”, “alwaysOff”, or

“dynamic”.

Please note that, if you disable border color rendering, dragging the border

will also be disabled.

Fudge?

There is an odd field named fudgeFactor. When set to a positive number,

this value is subtracted from every border, making them each that many pixels

shorter on each end. This does not affect the ability to grab a border.

Table 12.3.

Using borders.

Chapter 12

479

Part Ill

Table 12.4.

Manipulating the

GuiFrameSetCtrl.

In order to create
empty blocks ina

GuiFrameSet, simply
add a GuiControl as an

element for each cell

you wish to be blank.

480

Game Elements

Autobalancing

So, what if we would rather maintain balanced cells? We can enable the autobal-

ancing feature by setting autobalance to true. Now, the control will automati-

cally attempt to make all of the cells the same size the next time it wakes up.

Scripting the GuiFrameSet Ctrl

It is possible to manipulate this control from script. Table 12.4 shows all the

things we are allowed to do to this control from within a script.

addColumn () Add a new column to the control. All contents will
shift.

removeColumn () Remove a column from the right side of the control.

Contents will shift but will mot be deleted.

addRow () Add a new row to the control. All contents will shift.

Remove a row from the bottom of the control.
Contents will shift but will not be deleted.

removeRow ()

Return the current number of columns in the

frame.

getColumnCount ()

getRowCount () Return the current number of rows in the frame.

getRowOffset(row) Return the beginning pixel offset for row.

getColumnOffset(column) | Return the beginning pixel offset for column.

setRowOffset(row ,

offset)

Set the beginning pixel offset for row.

setColumnoOffset(column ,

offset)

Set the beginning pixel of fset for column.
12.6.2 GuiScrollCtrl

This control is used to contain a resizeable control. These resizeable controls

are made children of the GuiScrollCtrl, which then allows the user to use

scroll bars to move to a specific location within the child control.

GuiScrollCtrl can be programmed to supply a vertical and/or a horizontal

scroll bar. These scroll bars will be enabled (based on field settings) always,

never, or when the child content expands beyond the vertical or horizontal

bounds of the view area.

This control also provides a configurable margin and control over the

thumb affordance (the little slidey thing on the scroll bars).

Lastly, from script we can force the control to scroll to the top or bottom

of the child. ,

Standard TGE GUI Controls

Configuring GuiScrollCtrl

As noted above, this control provides a few configuration options.

Scroll Bars

We can control when or if either the vertical and/or horizontal scroll! bars will

be rendered by using the hScrollBar and vScrollBar fields. These fields

can be given the following values.

© alwaysoOn. Scrollbar always renders.

¢ alwaysOff. Scrollbar never renders.

® dynamic. Scrollbar renders based on size of child.

Additionally, if we’ve chosen to render the scroll bars, we can select either

scaling or nonscaling thumbs. The thumb is the little box on the scroll bar that

allows us to scroll by dragging. Normally, this thumb scales relative to how

“full” the scroll dimension (vertical or horizontal) is. However, for really big

children or really small scrolls, this behavior can cause the thumb to scale to

a very tiny size, making it difficult to grab with the mouse. Thus, we can force

the thumbs to maintain a fixed size, using the constantThumbHeight field.

new GuiScrollCtrl() {

hScrollBar = “dynamic”; // Render horizontal scrollbar as needed

vScrollBar = “alwaysOn”; // Always render vertical scrollbar

constantThumbHeight = false; // Scale thumb dynamically

}3

Margins

We can make minor adjustments to the margins of a scroll area; that is, we

can set a fixed margin that will cause the child to fit within a box defined by

the childMargin field. This field takes a two-element integer vector. The first

value in the vector is the left-right margin, and the second value is the top-

bottom margin. Both margins are in pixels. The GuiScrollCtrl already provides

a margin for its children, but this allows us to further expand that margin, to

account for various cases where the content may be occluded by a parent of

the GuiScrollCtrl.

new GuiScrollctrl() {

childMargin = “10 10”;

};

Ignoring First Responder

We can control whether this contro! will be allowed to become first responder.

The setting of first responder state is still controlled by the GuiContro! method

Chapter 12

481

Cc - iF
Part Ill

482

Game Elements

makeFirstResponder(), but we can force this GUI to ignore this request

by setting the willFirstRespond field to false. Also, don’t forget that this

concept only applies to versions of TGE prior to 1.4.

new GuiScrollCtrl() {

// Do not become firstResponder...ever

willFirstRespond = false;

\;

Scripting GuiScroliCtri

GuiScrollCtrl provides two console methods that allow us to scroll the con-

tents from script.

e scrollToBottom(). Scroll all the way to the bottom of the child.

e scrollToTop(). Scroll all the way to the top of the child.

No scripting control is provided for horizontal scrolling.

GuiScroliCtri Skin

This control has what is probably the most complicated (looking) skin. The

bitmap array is organized as shown in Table 12.5.

12.6.3 GuiStackControl

This very simple container is used to hold any other control in a fixed-width

stack. To use this control, simply place it and then start adding other controls

to it as children. These controls will stack up on each other. You may control

the direction of this stacking by setting the stackFromBottom field to true

or false. If it is true, the controls will stack bottom to top; otherwise, they

will stack from top to bottom (the default). The control can be resized hori-

zontally but not vertically.

If it isn’t clear, the purpose of this control is to allow us to dynamically

place other controls and to be guaranteed that they will all take on the same

width and that they will stack perfectly against their mates. See the images in

Figure 12.2 for clarification.

Please note that, if you do not want the controls to be right next to each

other, you may add some space by setting the padding field to a positive value.

12.6.4 GuiPaneControl

Here is another simple but useful container control. This control is designed to

provide us with a simple dropdown area that can contain any other control(s).

The user can simply hide/show the pane by clicking on the caption bar at the

Standard TGE GUI Controls Chapter | 2

Table 12.5.

Bitmap array for GuiScrollCtrl skin.

Ze ace.

eCaT TT

Up-Scroll Normal

Up-Scroll Depressed

Up-Scroll Inactive

Down-Scroll Normal Down-Scroll Depressed Down-Scroll Inactive

Top of Vertical Thumb Normal Top of Vertical Thumb Depressed Top of Vertical Thumb Inactive

 Middle of Vertical Thumb

Normal

Middle of Vertical Thumb
Depressed

Middle of Vertical Thumb

Inactive

Bottom of Vertical Thumb

Normal

Bottom of Vertical Thumb

‘ Depressed
Bottom of Vertical Thumb

Inactive

 Vertical Bar Normal Vertical Bar Depressed Vertical Bar Inactive

Right-Scroll Normal Right-Scroll Depressed Right-Scroll Inactive

Left-Scroll Normal Left-Scroll Depressed Left-Scroll Inactive

Left of Horizontal Thumb

Normal

Left of Horizontal Thumb
Depressed

Left of Horizontal Thumb

Inactive

 Middle of Horizontal Thumb

Normal

Middle of Horizontal! Thumb

‘Depressed

Middle of Horizontal Thumb

Inactive

Right of Horizontal Thumb

Normal

Right of Horizontal Thumb
Depressed

Right of Horizontal Thumb
Inactive

Horizontal Bar Normal Horizontal Bar Depressed Horizontal Bar Inactive

 Lower-Right Affordance

Normal Lower-Right Affordance
Depressed

Lower-Right Affordance

Inactive

Figure 12.2.

Using GuiStackControl.

stackFromBottom == false

stackFromBottom == true

Delete Button 1

(adjusts after sleep/wake)

483

Part Il Game Elements

Figure 12.3.

Console script error pane.

Table 12.6.

Bitmap array of

GuiPaneControl skin.

the skin.

484

This control! will

decide how tall to

make the caption bar

based on the height of

the first row in the skin

bitmap. So, if you need
the caption bar to be

taller or shorter, adjust

keyboard input device created.

Script Error Pane—Open

top. An example of this control that you should be familiar with is the console

script error pane (see Figure 12.3).

Please note that normally this control will be populated with a single scroll

control, which will then contain a self-expanding control like GuiMLTextCtrl

or GuiTextListCtrl.

GuiPaneControl Skin

This control uses a very simple skin which is ordered as shown in Table 12.6.

Pane Open Button - --

Pane Close Button -- -

Caption Bar Begin Caption Bar Caption Bar End +
Pane Toggle Button

Please note that you may make all of these buttons and bars the same if

you like. In the end, clicking anywhere on the bar will open or close it.

The variances in the bar graphic merely supply a recognizable affordance.

Caption Text

The caption bar may display a short (255 or fewer characters) text string. Fur-

thermore, this text may be rendered in front of or behind the caption bar.

To specify the text, set the caption field to the text you want. To specify

the render order, set the barBehindText to true or false. Setting it to true

will render the text in front of the bar; setting it to false will render the bar

in front of the text (Figure 12.4). ,

Standard TGE GU! Controls

Chapter |2

iwibarBehindText =true | CET See I< J Figure 12.4.

7 eee | oe BoP arto

Disabling Collapses

Although the control is really meant to be opened and closed, we may tell the con- ~

trol that it cannot be collapsed. Simply set the collapsable field to false.

Please note that, if the control is collapsed when we set this field, it will

not open when the caption is clicked. So, in effect, setting this field to false

locks the pane.

Scripting the Control

There isn’t much we can script on this control, but it is possible to toggle

the pane open and closed using the method setCollapsed(collapse),

which will collapse if collapse is true, otherwise it will be open. Be aware

that, if the pane collapsing is disabled, this method will do nothing.

12.6.5 GuiTabBookCtrl and GuiTabPageCtrl

A tab book is something that many of us have come to take for granted. It

is a control that contains an unspecified number of tabbed panes. By click-

ing on any of the tabs, the pane that is associated with the tab is brought

to the front and made vis-

ible. It’s like an index file,

except it is completely 2D

(Figure 12.5).

12) re
ers Wages Ra SR

Configuring GuiTabBookCtrl

To use this control, we must first place it and size it to our liking. Once that is

done, we need to decide where the tabs should be as well as how large they

should be. Right now, tabs can be on top or on the bottom of the tab pages

and can be any size we wish. In the future, the engine may also support tabs

on the right and left.

To specify the tab positions and sizes, set the fields as shown in Table 12.7.

Caption bar.

Figure 12.5

Tabbed panes.

tabPosition May be “Top” or “Bottom”.

tabHeight Height of tabs in pixels.

tabWidth Width of tabs in pixels.

Table 12.7

Setting tab positions and

sizes.

485

Part Ill

Table 12.8.

Adding and removing

pages.

Table 12.9.

Two callbacks for

GuiTabBookCtrl.

486

Game Elements

Wow, that was pretty simple! Now, let’s add some tab pages.

Adding Tab Pages

The first thing you must know about adding content to a tab book is that the

GuiTabBookCtrl may only contain GuiTabPageCtrl controls. If you try to place

any other kind of control in a tab book, the new control will either drop into

the first tab page the engine finds (owned by this book), or the control will

drop onto the book’s parent.

To add pages (and therefore tabs), simply select the book we just created

as the instant group and start adding GuilabPageCtrl controls until you have

enough pages.

We can add text to a page’s tab by setting the text field of the GuiTab-

PageCtrl we just added.

After we add our pages, we will need to put content in the pages.

Editing Tab Pages

Editing pages is a breeze. Simply click on the tab for the page you wish to

modify and start dropping controls into the page. We can tab through pages

while in the editor, making it exceptionally easy to modify our tab book.

Dynamic Page Creation/Destruction

We can add and remove pages from our tab books from script by calling the

two methods in Table 12.8.

addpage([pageName]) Add a new page to the GuiTabBookCtrl and return

the ID of the GuiTabPageCtrl that was added. You

may optionally specify the text for the page’s tab by
passing a value in pageName.

removePage(index) Remove the page at index (left to right) position.

More Scripting

Aside from dynamically adding and removing pages, we can also specify two

callbacks for a GuiTabBookCtrl (Table 12.9).

onClearSelected () Called when right mouse is clicked in a page and the
mouse is over a valid control (besides the page itself).

onTabSelected(tabText) | This callback is called when a tab is clicked and prior

to the page associated with that tab being
(re-)displayed. It is passed the text in the page’s tab.

Standard TGE GUI Controls

12.6.6 GuiWindowCtrl

This control provides the familiar window metaphor. This is a completely

skinnable control. By default, TGE comes with the graphics required to skin

this as a standard Windows- or OSX-style window (Figure 12.6). These win-

dows provide standard window behaviors through the following fields.

® canClose. Boolean value enabling close icon and ability to close window.

* canMaximize. Boolean value enabling maximize icon and ability to maxi-

mize window.

¢ canMinimize. Boolean value enabling minimize icon and ability to mini-
mize window.

® canMove. Boolean value enabling dragging. If true, the window can be
dragged by the upper bar.

® closeCommand. This script is executed when the window is closed.

e minSize. A two-integer vector describing the minimum size this window

can take when drag-resized. This does not affect minimized size, which is
always just the drag-bar and buttons.

¢ resizeHeight. Boolean value enabling height drag-resizing, i.e., the win-

dow can be height-resized by dragging a corner or edge.

¢ resizeWidth. Boolean value enabling width drag-resizing, i.e., the win-
dow can be width-resized by dragging a corner or edge.

new GuiWindowCtrl() {

//...

resizeWidth = “1”;

resizeHeight = “1”;

canMove = “1”;

canClose = “1”;

canMinimize = “1%;

canMaximize = “1%;

minSize = “50 50”;

di

The sample GuiWindowCtrl definition above creates an unnamed window

that can be resized in both height and width, and can be moved, closed, mini-

mized, and maximized. It also has a minimum drag size of 50 x 50 pixels.

GuiWindowCtrl Skin

As noted above, this is a fully skinnable control. This skinning is controlled by

two GuiControlProfile fields and a bitmap.

e hasBitmapArray. Boolean value enabling skinning.

e bitmap. Path to the bitmap skin.

Chapter |2

Figure 12.6.

Window skins.

b. OSX theme.

487

Part Ill

Game Elements

Table 12.10.

Bitmap array for GuiWindowCtrl skin.

Close Button

Normal

Close Button

Depressed

Close Button

Inactive

Maximize Button

Normal

Maximize Button
Depressed

Maximize Button

Inactive

Revert Button

Normal
Revert Button

Depressed

Revert Button

Inactive

Minimize Button Minimize Button Minimize Button

Normal Depressed Inactive

Title Bar Title Bar Title Bar _ _
Left Edge Right Edge Middle

Title Bar Title Bar Title Bar _ _

Left Edge Right Edge Middle
Inactive Inactive Inactive

Left Edge Right Edge Lower Left Bottom Edge Lower Right

Corner Corner

The bitmap array is organized as shown in Table 12.10.

Making Your Own GuiWindowCtrl Skin

Sometimes it isn’t enough just to see a finished example, so let’s make a

simple window skin together and then improve on it a bit.

As a rule, I like to start simple then work my way up. Thus, we will make

a simple GuiWindowCtr! bitmap array together.

Setting up.

1. Open your graphics program of choice.

2. Create a blank 300 x 300 image with a red (255 0 0) background.

3. Enable a viewable grid and adjust it to 1 x 1 pixels.

4 . Zoom in on the upper-left corner of your image until the grid is at one-pixel

scale.

Button blanks.

1. Select a foreground color of (64 64 64).

488

Standard TGE GUI Controls

2. Create a new transparent layer and rename it “Button Blanks.”

3. In this new layer, using a rectangular selection tool starting at X:0 Y:1,

select a 17 x 14 pixel area.

4. Flood fill the selection.

5. Copy the selection and paste it to this layer as a new selection, placing

it at X:10 Y:1.

6. Paste another selection in this row, maintaining the one-pixel distance.

7. Make three more rows, and you should have an image like the one in

Figure 12.7.

Upper bars normal.

1. Create a new transparent layer and name it “Top Bar Normal.”

2. Select a new fill color of (128 128 128).

3. Create two 5 x 23 rectangles and one 38 x 23 rectangle, again maintain-

ing one pixel between this new row and those above, as well as one

pixel between each element in the row (Figure 12.8).

Upper bars inactive.

1. Create a new transparent layer.

2. Copy the bars we just made (Figure 12.8) and paste them into our new

layer.

Edges and bottom.

1. Create a last layer and name it “Edges + Bottom.”

2. Create the following parts: 3x9, 3x9, 3%*3,7%*3, anda last 3x3.

3. Our final image should look like Figure 12.9.

That is it! We now have a very simple GuiWindowCtrl bitmap array. Go

ahead and save it, duplicate it, and then save the duplicate as a PNG. Use

this PNG in a test window, and it should look like Figure 12.10.

Figure 12.10

Our new GuiWindowCtrl skin in use.

Test Window 0

Chapter |2

Figure 12.7

Figure 12.8

Figure 12.9

489

Part ill

490

Game Elements

12.7 Backgrounds and Borders

The controls in this category are normally used as backgrounds to other con-

trols, but they are quite versatile and can be used for a number of more

advanced effects. I’ll give you a hint. Think in terms of layers and what you

could do by enabling and disabling these layers. Combine this with the con-

cept of masking and, well...

12.7.1 GuiBitmapCtrl

This control is used to display any reasonably sized image. In TGE versions

prior to 1.3, this control could only accept a bitmap with a maximum size of

256 x 256 pixels. For larger images, the GuiChunkedBitmapCtrl was used. This

limitation is no Jonger in place.

The Bitmap

The initial bitmap is specified as a field in the control.

new GuiBitmapCtrl({ myTestBitmap) {

bitmap = “./someImage”;

}

Subsequently, this can be changed using the setBitmap() method and a

complete path to a new image.

myTestBitmap.setBitmap(expandFilename (“./someImage2.png”));

In the above example, it is implied that there is an image file with the name

“somelmage2.png” in the same directory as the script.

Wrapping and Offset

When creating a GuiBitmapCtrl, we can specify the wrap field as either true or

false. If wrap is set to false and the image is larger than the GuiBitmapCtrl

extent, the image will be scaled down. Vice versa, if the extent is larger than

the image, it will be scaled up. However, if wrap is true, no scaling will

occur. The image may be clipped or repeated based on size versus extent.

In addition to wrapping, we can offset an image using the setValue ()

method.

function TestBitmap2::scrollMe(%this) {

if(! Sthis.isScrolling) return; -

$this.curxX += 2;

Standard TGE GUI Controls

Sthis.cury += 2;

if($this.curX >= 256) {

Sthis.curxX = 0;

$this.curY = 0;

}

Sthis.setValue(Sthis.curxX , %this.curyY);

Sthis.schedule(32 , scrollMe };

}

The code above comes right from the GPGT Lesson Kit. It is used to scroll the

sample image. Note that positive values cause the image to be offset up and

left, whereas negative values cause it to be offset down and right. All values

are in pixels.

12.7.2 GuiChunkedBitmapCtrl

This contro] is the big brother to GuiBitmapCtr! and serves basically the same

purpose. It was used in days of old to render images larger than 256 x 256.

It did this by cutting up the image and storing it appropriately on the video

card/memory. Today’s hardware has made this contro! pretty much obsolete,

but there are a few variances in its behavior, so we'll discuss it briefly.

The Bitmap

As with GuiBitmapCtrl, the initial bitmap is specified using the bitmap field.

Also like GuiBitmapCtrl, this control does support changing the bitmap after

creation using the setBitmap() method.

Tiling

Whereas GuiBitmapCtrl had a wrapping functionality, GuiChunkedBitmapCtrl

has tiling. Tiling is controlled by the Boolean tile field and behaves pretty

much the same as wrapping, but not quite as reliably.

The useVariable

A significant difference between GuiBitmapCtrl and GuiChunkedBitmapCtrl

is the useVariable field. If this field is set to true, we can specify a vari-

able name in the bitmap string instead of a path. Then, when this control is

rendered, it will look at the contents of the named variable for the path to its

image file. This field is only checked when the onWake() callback is called.

So, you may only change a bitmap using this field between wakes.

Chapter 12

491

Part Ill

Figure 12.11.

Bitmap array for

GuiBitmapBorderCtrl skin.

492

Game Elements

In the following example, we’ve chosen to use a named variable to specify

our path instead of doing so directly.

new GuiChunkedBitmapCtrl() {

//

useVariable = true;

variable = “MyBitmap”;

bitmap= “”;

}i

Of course, for this to work, we must have defined $MyBitmap.

SMyBitmap = expandFileName(“.\some\path\to\some\image”);

12.7.3 GuiBitmapBorderCtrl

This skinnable control is used to adorn other controls with a frame (or

border).

GuiBitmapBorderCtri Skin

The bitmap array for this control is organized as shown in in Figure 12.11.

Upper-left border | Upper-right border Top border — --

Left border Right Border Lower-left Lower Lower-right

border border border

a
————

Making Your Own GUIBitmapBorderCtrl Skin

Learning to make skins for the border control is a step-by-step process. In this

section, I will provide you with the basic steps needed to make a plain bor-

der. Once you have mastered this process, you should feel free to create more

advanced borders using the same rules.

Setting up.

1, Open your graphics program of choice.

Standard TGE GUI Controls Chapter |2

2. Create a blank 300 x 300 image with a red (255 0 0) back-

ground.
Figure 12.12

3. Enable a viewable grid and adjust it to 1 x 1 pixels.

4. Zoom in on the upper-left corner of your image until the grid
is at one-pixel scale.

Top of bitmap border.

1. Create the three components of the upper bar: upper-left,

lower-right, and middle. In this example, they are purple,
blue, and cyan, respectively (Figure 12.12).

Sides and bottom.

1. Create the two sides and the bottom components: left, right,

lower-left, bottom, and lower-right. In this example, they are

green, yellow, pink, pale-yellow, and red-brown, respectively

(Figure 12.12).

End result.

1. Our end result would look something like the image in Fig-

ure 12.13.

Figure 12.13

12.7.4 GuiFadelnBitmapCtrl

This control is used to display an image by fading it in, waiting, and then fad-

ing it out over specified times. There is no good way to make this cycle repeat.

In fact, the only way to cause the fading cycle to start over is to put the control

to sleep and then wake it up again.

Setting Up the Fade

Setting up the GuiFadeInBitmapCtrl is relatively simple. There are three fields

that specify the fade timing.

new GuiFadeInBitmapCtrl(myFadeInBitmap) {

-fadeInTime = 1000; // Fade in over one second

waitTime = 2000; // Stay visible (without fading) for two seconds

fadeOutTime = 500; // Fade out over a half-second

};

The mechanics of this control are quite simple. Upon waking, the control will

start to fade in a bitmap over a period of time fadeInTime. Once the fade in

is complete, the image will stay faded in for waitTime. Finally, the image will

fade out for fadeOutTime.

When the whole process is complete, the engine will set the field done to

true. Please remember that the engine never sets this to false. So, if you are

493

Part Ill

—-

If you wish

to capture
key presses on a

GUIFadelnBitmapCtrl

GUI or any other GUI
that does not normally

catch them, simply

add a1 1} button

positioned at <0 O>, set

the accelerator

field of the button to

the key you want to

catch, and use the

command field to

execute the task you

need. Repeat this for

every key you need

to catch. This is a lot

better than using an

ActionMap for these

special cases. ————

494

Game Elements

relying on this value, be sure to clear it when you put the control to sleep and be

double sure that it is saved as false or set to false in the onAdd() method.

Interestingly, fadeInTime and waitTime can both be set to zero, but

setting fadeOutTime to zero will cause the bitmap to display forever at full

alpha, i.e., it won’t fade out.

Sensing Clicks

This control is often used to display a splash image when starting a game or

as an interlude between missions, etc. Users will frequently want to bypass

these screens (once they’ve seen them enough times to stop being impressed

with the artwork).

As a game player, you probably will recall that the most frequently

r used way to bypass these screens is either an ESC key press, a SPACEBAR

key press, or a left mouse click.

TGE has supplied the ability to sense a left mouse click via the click ()

callback. If the user presses the left mouse button while the cursor is over

this control, the click() method will fire (if specified). If you want the

other mentioned inputs to be sensed, you’ll need to use a GuilnputCtrl (see

Section 12.12.3).

function myFadeInBitmap::click(%this) {

echo (“myFadeInBitmap::click() => User clicked the left

mouse button.”);

}i

To stop this control from being displayed, simply remove it from the canvas.

12.8 Text Controls

This section discusses the various controls whose purpose it is to store, dis-

play, or take as input, text values.

12.8.1 GuiMessageVectorCtrl

This control is normally used to build a chat HUD, but it can be used for a

number of other purposes as well. In order to use this control, a Message-

Vector object must also be used (see “The MessageVector” below).

Since the actual data to be displayed is stored in the MessageVector and

not this control, we can remove and add GuiMessageVectorCtrl controls at will

and not corrupt message data.

This control is capable of displaying colorized text.

Standard TGE GUI Controls

Child Only
This contro] is not allowed to exist standalone. It must instead be made a child

of a control] that allows for expansion of the child. Thus, if you wish to use it,

you must make this control the child of a GuiScrollCtrl. If you do not do this,

you'll crash the engine when you try to attach the GuiMessageVectorCtrl to a

nonempty MessageVector or when you attempt to add text to a MessageVector

that is already attached to it.

A suitable definition of a GuiMessageVectorCtr! would look something

like the following.

new GuiScrollctrl1l() {

//

new GuiMessageVectorCtrl (testMessageVectorCtrl) {

//

};

he

The MessageVector

So, what is this business about MessageVectors? Well, as noted above, the

GuiMessageVectorCtrl only has one job. That job is to display the contents of

a MessageVector. The MessageVector is a standalone class that can contain

a variable amount of text. MessageVectors don’t have any special fields, and

thus creating one is as simple as the following.

SmyMsgVector = new MessageVector ();

Once the MessageVector has been created, text can be added to the front

or to the back of what is basically a text queue, as follows.

Chapter 12

SmyMsgVector.pushFrontLine(“some string”); // Put text at front of queue

SmyMsgVector.pushBackLine(“some string”); // Put text at back of queue

We can also insert text in the middle of the queue using the insertLine()

method.

SmyMsgVector.insertLine(5 , “some text”);

Later, we can peek at a line of text in the MessageVector using the

getLineText () method.

echo(“Line 10 => “, SmyMsgVector.getLineText(10));

495

Part Ill

496

Game Elements

At any time, we can remove lines using the popFrontLine(), popBack-

Line (), or deleteLine() methods.

SmyMsgVector.popFrontLine () ;

SmyMsgVector.popBackLine();

SmyMsgVector.deleteLine(5);

Interestingly, we can also save the contents of a MessageVector to a file.

SmyMsgVector.dump(“~/chat.log” , “My Chat Log”);

The above example would create a file named “chat.log” in the current mod

directory, make the first line of this file equal to “My Chat Log”, and then

dump the contents of SmyMsgqVector to the file. The file is automatically

closed at the end of the dump.

MessageVector and Tags

MessageVectors support one more interesting feature—tags. When we add

lines of text to a MessageVector, we are allowed to supply a unique inte-

ger value (greater than 0) as a tag. Later, we can use these tags to do

searches.

For a complete treatment of MessageVector syntax, please see Appendix

A.4, “GUI Controls Quick Reference.”

Attaching a MessageVector

OK, so far we’ve talked a lot about the place we store our text (the Message-

Vector), but not the contro] that displays the text (the GuiMessageVectorCtrl).

To display the text from a MessageVector, we simply attach it to any currently

active GuiMessageVectorCtrl.

testMessageVectorCtrl.attach(S$myMsgqVector);

In the above example, we are attaching our previously defined MessageVector

SmyMsgVector to the GuiMessageVectorCtrl we declared at the start of this

discussion (testMessageVectorCtrl}.

That’s it! If we’ve done everything correctly, the text will now be dis-

played in our chat HUD (or whatever it is being used as).

At a later time, we can disconnect the MessageVector using the detach ()

method.

testMessageVectorCtrl.detach();

Standard TGE GUI Controls

Note that multiple detaches are allowed, but if a GuiMessageVectorCtrl is

not attached to a MessageVector, it will print a warning when the detach ()

method is called.

Also note that a single MessageVector can be attached to multiple

GuiMessageVectorCtrl controls.

12.8.2 GuiMLTextCtrl

This control is a markup-language-supporting text control (ML = markup

language). In addition to printing multi-line text, this control will accept TGE

Markup Language (TorqueML) formatted text, allowing us to make changes

to the font, font weight, color, etc. A complete listing of the TorqueML tokens

and the syntax for using them is supplied in Appendix A.4, “GUI Controls

Quick Reference.” This control also supports onURL() and onResize() call-

backs. To use one of these controls, do the following.

1. Open the GUI that will contain our new GuiMLTextCtrl using the GUI

editor.

2. Select appropriate control as “add-parent” for the GuiMLTextCtrl (can be

embedded in any control).

. Add GuiMLTextCtrl.

. Position, size, and configure GuiMLTextCtrl.

. Add your text.

. Reflow the GuiMLTextCtrl. D
m

&

WwW

Configuring GuiMLTextCtrl

The GuiMLTextCtrl only has a few new fields.

* allowColorChars. This enables colors defined in the selected profile to
take effect. I suggest setting this to false and using TorqueML instead.

e deniedSound. This is a reference to an audio profile that should be

‘played when an attempt is made to place more text than maxChars in this

control.

e lineSpacing. An integer value specifying the number of pixels between
lines.

e maxChars. This integer value can be used to place a cap on the number

of characters this control will display. All characters are counted, including

formatting characters. Set this to -1 for no limit.

* text. This string is the initial contents of the control]. This is most useful
for making ML labels. Note that the GUI editor will clip this at 255 char-
acters, so it is usually best to use the set Text () method instead of static

assignment. ,

Chapter 12

497

Part Ill

498

Game Elements

Scripting GuiMLTextCtrl

This control can be scripted in the following ways.

Adding, Setting, and Clearing Text

There are two means of adding text to this control.

// Add text without reformatting

Scontrol.addText(“Add this text”, false);

Scontrol.setText(“Make the text equal to this”);

The first method adds text to the end of the control without optionally

reformatting the displayed text. The second method sets all text in the control

to the passed content. This method can also be used to clear the control. Sim-

ply pass a null string, ~”.

Formatting and Reflowing

As noted, when adding text we have the option of causing the control to refor-

mat. This basically causes the control to reevaluate the contents and to be

sure that everything is displayed correctly. However, forcing a reformat every

time we add a line of text might be wasteful if we are adding many lines at

once. Thus, we can wait until we are done and then reflow the control at the

end.

$control.forceReflow();

This will reformat the control just once. It is worth mentioning that, if you add

text and don’t reformat or reflow, the text will not be displayed.

Scrolling and Tags

If we have embedded our GuiMLTextCtrl in a GuiScrollCtrl, we can force the

contents to scroll to the top.

S$control.scrollToTop();

We can also force the contents to scroll to an embedded tag.

S$control.scrollToTag(10); // Scroll to tag ID #10

Tags are special (nonprinting) TorqueML content that can be embedded in our

text. This is useful for making context-sensitive help pages.

Standard TGE GUI Controls

TorqueML

The TGE Markup Language, TorqueML, is pretty extensive and can do many

of the things that HTML can do. A complete listing of the TorqueML tags is

provided in Appendix A.4, “GUI Controls Quick Reference,” but I’ll cover a

few concepts and highlights here to help speed you on your way.

Syntax Closure

Unlike modern HTML, TorqueML does not require closure for most of its

formatting characters. In other words, once an effect is applied, it stays in

effect. The exceptions to this are clipping and hyperlinks, both of which have

a closure tag.

Attribute Stacking

Instead of the standard closure mechanisms, TorqueML supplies the concept

of an attribute stack. Thus, we can push the current formatting attributes to

the attribute stack, apply some changes, print some text, and then pop our old

formatting attributes back off the stack.

<font:arial:10>

This text is in Arial-10.

<spush>

<font:arial:14>

This text is in Arial-14.

<spop>

This text is in Arial~10.

Tables and Tabs

TorqueML doesn’t really support tables, but it does support a formatting fea-

ture that allows us to easily columnize our text in a table-like format. For

example, to make a two-column table, do the following.

<tab:60>

Torque Rocks

GPGT Makes Learning Easier

This line will be too long

This statement has told TGE to make the first column 60 pixels wide. Subse-

quently, the first TAB in every line will cause the text following the TAB to move

over to pixel 61. Thus, our sample would print out something like the following.

Torque Rocks

GPGT Makes Learning Easier

This line will be toolong

Chapter | 2

499

Part Il

500

Game Elements

As can be seen, the formatting is somewhat lacking. It would be better to

make the first column of the third line clip instead.

Clipping

Fortunately for us, TorqueML supplies a method of clipping text to a specific

pixel width.

<tab: 60>

Torque Rocks

GPGT Makes Learning Easier

<clip:58>This line will be too</clip> long

The first column on the third line has been instructed to clip its contents to 58

pixels. Now, when displayed, we get something like the following.

Torque Rocks

GPGT Makes Learning Easier

This line ... long

This may seem a bit strange, but consider the case where you are printing data

via a scripted formatting system. In cases like this, you have no good way to

know in advance if the data will be too wide for your column, thus, you must

clip it to maintain formatting.

Tags

We touched on tags above, but for completeness, we’ll discuss them here.

Tags are nonprinting TorqueML elements that are used to mark a line for later

searching and locating. To add a tag, simply specify it as follows.

<tag:100>

Later, we can scroll to the line marked with this tag using the scrollToTag()

method. It’s that simple. The only rule to remember is that tags must be

unique integer values greater than zero.

12.8.3 GuiMLTextEditCtrl

This control is a TorqueML-formatted text entry. Nearly all of its functionality

derives from its parent GuiMLTextCtrl. Its purpose is to provide a “nicely for-

matted” text entry field. The simplest way to use this control is to pre-specify

the font, margins, etc. in the text field. Subsequent text typed into the con-

trol will now follow these formatting rules.

Standard TGE GUI Controls

new GuiMLTextEditCtrl (TorqueMLFormattedTextEntry) {

text = “<font:Tahoma Bold:22 >”;

i

Text that is typed into our example control (above) will now be formatted as

Tahoma Bold at 22 points.

Escaping

This control provides a special field named escapeCommand where we can

specify a command to execute when the ESC key is pressed while this control

is in focus.

new GuiMLTextEditCtrl (TorqueMLFormattedTextEntry) {

escapeCommand = “doit();”; // Run doit() when ESC is pressed

e

12.8.4 GuiTextCtrl

This is a label, plain and simple. It displays a fixed (256 characters or fewer)

amount of text on one line. It can be updated dynamically from script if

needed, but beyond that it isn’t very flexible.

new GuiTextCtrl(ourLabel) {

maxLength = 12;

text= “Torque Rocks!”;

i

When displayed, the above example will print “Torque Rocks”, without the

exclamation point because we have limited the text length to 12 characters.

Changing Labels

Subsequently, we can update the contents of the control using the set Text ()

method.

ourLabel.setText (“Torque is Gool”);

Again, our text will be clipped because the text we have specified is too

long.

altCommand

Interestingly, this control provides an altCommand action. That is, if the field

altCommand is specified, the function specified there will be called when this

Chapter 12

501

Part Ill

502

Game Elements

control is active and the ENTER key is pressed. This only applies to the chil-

dren of GuiTextCtrl, which we will talk about next.

12.8.5 GuiTextEditCtrl

This is a simple single-line text entry control. It is a child of GuiTextCtrl and

is thus limited to a maximum of 256 characters and can be limited with the

same mechanisms provided by its parent. This control can also recall prior

entries (a history) and allows them to be recalled via the up and down arrows

on the keyboard.

escapeCommand and altCommand

Remember that GuiTextCtrl allowed us to specify an altCommand? Well, as

the child of that control, GuiTextEditCtrl will evaluate the script specified in

altCommand when the ENTER key is pressed. Additionally, we can specify a

script for the ESC key in the suitably named field escapeCommand.

Passwords

If we are using this text entry as a password field, we can tell TGE to print

asterisks instead of characters as the user types by setting the password field

to true.

Numeric Only

Recall that we can set the profile field numbersOn1ly to true. Doing so causes

this control to only accept numeric inputs.

I'm Full!

Because this control has a limit on the amount of data it can accept, we need

a way to provide feedback to the user when they attempt to exceed that limit.

This can be done by specifying an audio profile for the deniedSound field.

Then, when the size limit is reached and an attempt is made to add more

characters, the qeniedSound will play.

Your History?

This control has the nice feature of retaining a history of prior values. They

can be recalled using the up and down arrow keys. We, as the designers, can

specify a limit on the number of history lines by setting the field historySize

to any integer value of zero or greater, zero being no history.

Standard TGE GUI Controls Chapter 12

Tab Completion

In addition to the commands fired by ENTER and ESC, we can specify that the

TAB key will fire a callback. To do this, set the field tabComplete to true

and provide a callback definition.

function GuiTextEditCtrl::onTabComplete(%this) {

// Do something

}

Validation

As if all the scripts that get called were not enough, we can specify one more.

If we specify a script or function name in the validate field, it will be called

every time this control loses focus. |

Moving the Cursor

Lastly, it will occasionally be useful to either know or set the position of the

cursor in the control. Thus, two functions are provided for this purpose.

%control.getCursorPos ()

scontrol.setCursorPos(20); // Move cursor after character 20

12.8.6 GuiTextListCtrl

This control is a multiline list of selectable entries. Alone, it can be used to

display data, but in concert with other controls (buttons), it can be used as a

selection control. Furthermore, this can be made the child of a GuiScrollCtrl

to allow for long lists.

Configuring GuiTextListCtrl

This child of GuiTextCtrl adds three new fields.

® clipColumnText. If we are implementing columns, setting this field to
true tells TGE to clip the contents of a column if it is too wide.

® columns. Again, if we are implementing columns, we must specify a list of
integer widths for each column using this multi-entry integer vector.

e fitParentWidth. When this field is set to true, the GuiTextListCtrl will

expand to fit the width of the parent and no further. This means that, if the
control is embedded in a GuiScrollCtrl, its horizontal bar will not be acti-

vated. In short, if our text is wider than the scroll area, it will be clipped. If

we don’t want our rows to be clipped, we need to set this field to false.

503

Part Il

504

Game Elements

Now the GuiTextListCtrl will expand to the size of the widest line of text,

possibly activating a parent scroll control’s horizontal scroll bar.

Rows and Columns

If we so choose, we can cause text to be formatted into columns. Columns are

separated by the TAB character.

So, if we have specified a value “50 100 150” in the columns field, we

could add some text to our control and expect that the first column should

start at pixel offset 50, the second (TAB-separated) column should start at

pixel 100, and the third column should start at pixel 150.

Don’t be confused by the slight variance between this behavior and that

of GuiMLTextCtrl. For GuiMLTextCtrl, the first value specifies the start location

of the second column. For this control, it specifies the location of the first

column.

Scripting GuiTextListCtrl

This control can be scripted in the following ways.

Adding Rows

Text can be added to the GuiTextListCtrl using the addRow() method.

$control.addRow(0 , “Some text”, 1);

This example specified that we want the string “Some text” to be added at row

1 and given an ID of 0. The row argument is optional, and if not specified,

new text is added to the end of the list. However, we always need to specify

an ID, but these IDs do not need to be unique and can be zero if you don’t

intend to use them for any purpose.

Changing and Removing Rows

It is possible to change the text in an entry at a later time, but to do so, we

must have specified a unique ID for the row. Then we can do the following.

$control.setRowByID({ 0 , “Some new text”);

Here, we have changed the text in the row with ID 0 to “Some new text”. If

multiple rows have the same ID, the first row with this ID will be the one

changed.

We can also remove a row if we choose. In the case below, we will remove

a numbered row (2). Please remember that row numbering starts at 0.

Scontrol.removeRow(2); // Removes row 2

Standard TGE GUI Controls

If we have specified a unique ID for a row, we can use that ID to find and

remove the row.

scontrol.removeRowByID(3);

Again, if multiple rows have the same ID, the first row with this ID is the one

affected.

Clearing the List

We can clear a list at any time as follows.

’control.clear();

Getting Row Attributes

As most of the time we are accessing rows for selection purposes, there are

myriad methods for getting row attributes. We can get the first row number

with a specified ID.

S$control.getRowNumByID(2); // Return number of row with ID 2

We can get the ID of a specific row.

Scontrol.getRowID(4); // Get ID of row 4

We can get the text in a row.

Scontrol.getRowText(15); // Get text in row 15

We can get the text in the first row with a specific ID.

$control.getRowTextByID(12); // Get text of first row with ID 12

Finally, we can get the ID of the currently selected row.

scontrol.getSelectedID();

If no row is selected, the above call will return -1.

Row Count

We can count how many rows there are with the rowCount () method.

echo(“This GUITextListCtrl has” SPC %control.rowCount() SPC “rows.”);

Chapter }2

505

Part Ill

506

Game Elements

Navigating

Thus far, we’ve worried about the contents of rows, but how do we navigate

our list? First, we can search for a row with a specific text value, like this.

Scontrol.findTextIndex(“this text”);

The above code will return the first row encountered that has the exact string

“this text”. If no match is found, the method returns -1.

As the user is expected to select an entry from this list, we might also be

expected to be able to find it. If a row is selected, we can retrieve its ID using

the getSelectedID() method. Sometimes, though, we would like to force

an entry to be selected. We can do this in two ways, either by ID or directly by

row number.

s$control.setSelectedByID(43); // Select first row with ID 43

$control.setSelectedRow(14); // Select row 14

In either of these cases, if the ID or the row does not exist, no row will be

selected.

Scrolling

Sometimes when we are selecting a default row, that row may not be guaran-

teed to be in the visible set of rows (i.e., it is off screen in the scroll list). We

can force this line to show itself as follows.

$control.scrollVisible(10); // Make sure row 10 is visible

There is no guarantee on the exact location of the line on our screen, but it

will be visible.

(De-}Activating Rows

It will on occasion be necessary to (de-)activate a row, say an option is (not)

meaningful or available in the current context. Thus, we can toggle whether

a row is active.

%control.setRowActive(10 , false); // Deactivate row 10

We can check to see if a row 1s active, too.

1f (%control.isRowActive({ 10)) {

echo(“Row 10 is active!”);

} else {

echo(“Row 10 is not active!”);

}

We would, of course, expect the above code to print: Row 10 is not

Standard TGE GUI Controls

active!

Sorting

Last to mention but not least in importance is the fact that we can sort our

lists. This comes in handy for those of use who are too lazy to be sure entries

are in the right order or in cases where it is out of our hands. We can sort

alphabetically on a specific column or numerically (again, by column).

$control.sort(2 , true); // Increasing sort on column 2

Chapter |2

Active rows are

still rendered and

still selectable. The

ability to mark rows as

in/active is provided to

allow us to modify our

script behaviors based

on the settings of a

particular line.
scontrol.sortByNumerical(0, false); // Decreasing numeric sort on column 0

12.9 Buttons

This section describes the controls used for buttons.

12.9.1 GuiButtonBaseCtr!
This is the base class to all other buttons and should not be used to make but-

tons. Its only job is to provide common fields and methods for the GuiBitmap-

ButtonCtrl, GuiButtonCtrl, GuiCheckBoxCtrl, and GuiRadioCtr] controls.

This control supports three styles of buttons (selected through the

buttontType field).

Push buttons (buttonType == PushButton). This is your standard but-

ton. It depresses when clicked and goes back to its normal state when the
mouse is moved or the mouse button is released.

‘Toggle buttons (buttonType == ToggleButton). This is like a push button

except that it retains the current state when the mouse button is released.

Radio buttons (buttonType == RadioButton). This is like a toggle but-
ton, but this button is also grouped with other buttons. Within the group,
only one button may be “on,” while all others are “off.” Selecting a new
button as the “on” button changes all other buttons in the group to “off.”

All buttons are allowed to have some text in them. This text is set in the

button’s text field. Not all button types will display the text; GuiBitmap-

Button specifically does not, although, in the case of a GuiBitmapButton, if

the graphic is not available, a default button will be displayed instead and it

will display the text. This is a nice debug/design feature.
507

Part Ill

508

Game Elements

Grouping Radio Buttons

So, we can group radio buttons, but how do we do it? First, all radio buttons

that are going to be grouped need to be at the same level; that is, they should

have the same parent. Second, to group them, set every grouped radio button’s

groupNum field to the same nonnegative value. It is perfectly acceptable for

different groups with different parents to have the same groupNum. However,

only radio buttons with the same parent and the same groupNum will com-

municate with each other and act like a radio-button group. All other radio

buttons will be treated separately.

Note that, by default, all radio buttons in a group start off unselected, so

you may wish to preselect a button when the interface first wakes up. See

below for how this can be done.

Getting and Setting Button Data

Now that we have our buttons, we need some ways to get and set their values.

It may sometimes be desirable to be able to check the text value of a button

or to change it. For these purposes, there are two methods.

SbuttonText = %button.getText ();

Sbutton.setText(“New button text”);

As mentioned in “Grouping Radio Buttons” above, we may at some time wish

to select a button from script. To do this, simply use the performClick ()

method.

Sbutton.performClick(); // Send click event to this button

Button Scripts

Lastly, how do we program the button to do something when clicked? Recall

that all children of GuiControl provide a field named command. In this case,

command should be a small script or a function call of some sort. This com-

mand will be called when the user clicks the button and releases the mouse

button, not before.

12.9.2 GuiBitmapButtonCtrl

This control is a skinnable button. Unlike other skinned controls, this control

takes a maximum of four normal (nonarray) graphics. Graphics files for this

control use the following naming convention. .

prefix tag.suffix

® prefix. Any name for the image file.

Standard TGE GUI Controls Chapter 12

e _tag. One each of the following (based on button state).

¢ _n. Normal.

¢ _h. Highlighted.

¢ _d. Depressed.

¢ _i. Inactive.

¢ suffix. png, jpg, bmp, etc.

. For example, we could provide the four images in Figure 12.14.

Figure 12.14.

Using

GuiBitmapButtonCtrl.

gglogo_n.png gglogo_h.png gglogo_d.png gglogo_i.png

(normal) (highligted) (depressed) (inactive)

To use these images, we set the bitmap field to “path + prefix”. In other words,

we specify the relative or absolute path and the prefix of the filename. The

control is smart enough to load all four images based on this information.

Specifically, bitmap would be set to “./gglogo”.

If an image file is not provided for one or more of the states highlighted,

depressed, or invalid, the normal image will be substituted. Sensibly, the nor-

mal image is always required. |

_ Anice shortcut for setting up these buttons is to set the extent to “0 0” in

the GUI inspector and then to press Apply. This will cause the GUI to expand

to the size of the image file. Nice, eh?

Interestingly, the four different images need not be the same size; how-

ever, results may vary based on what choices you make here.

We can change the bitmap at a later time using the setBitmap()

method.

myButton.setBitmap (“full path + prefix”);

12.9.3 GuiButtonCtrl

This is a standard button. It defaults to a buttonType of PushButton. All

functionality comes from its parent, GuiBaseButtonCtrl.

12.9.4 GuiCheckBoxCtrl

This skinnable control displays the perennial checkbox. By default, this con-

trol toggles between on and off.

509

Part Ill

510

Game Elements

Table 12.11. Table 12.12.

Sample image of checkboxes. Sample image of radio buttons.

: Unchecked Unchecked
0 0

a Normal Normal

1 Checked ec 1 Checked

Normal i Normal

Fe 2 Unchecked 2 Unchecked

i Inactive i Inactive

3 Checked . 3 Checked
Inactive Inactive

Skinning

e Define a profile with the following settings.

new GuiControlProfile (aProfileName) {

//

hasBitmapArray = true;

bitmap= “path to bitmap array graphic”;

hi

e Provide an image file with the structure in Table 12.11.

12.9.5 GuiRadioCtrl

This is a skinnable radio-button control. It is used when a group of buttons

must have only one button set at any one time.

Skinning

e Define a profile with the following settings.

new GuiControlProfile (aProfileName) {

//

hasBitmapArray = true;

bitmap= “path to bitmap array graphic”;

yi

e Provide an image file with the structure in Table 12.12.

In order for the radio control to behave properly, the buttons all need to have

the same parent and groupNum. In the following example, either “Radio 0” or

“Radio 1” can be selected, but not both.

Standard TGE GU! Controls

new guiControl() {

new GuiRadioctrl() {

\e

profile = “GuiRadioProfile”;

//..

text = “Radio 0”;

groupNum = “1”;

buttonType = “RadioButton”;-:

new GuiRadioCtrl() {

);

);

12.

profile = “GuiRadioProfile”;

//..

text = “Radio 1”;

groupNum = “1%;

buttonType = “RadioButton”;

10 Menus

This section describes the controls used for menus.

12.

This

10.1 GuiMenuBar

semi-skinnable contro] displays the familiar menu-bar metaphor. By

semi-skinnable, I mean that graphic icons can be embedded in menu items,

but the bar and the dropdowns themselves are not skinned.

Creating a GuiMenuBar

GuiMenuBar does not provide any new fields. Also, a GuiMenuBar is normally

placed at the top of its parent, but in theory it can be placed in any position.

A simple definition would Jook something like the following.

new GuiMenuBar(myMenuBar) {

position= “O 0”;

horizSizing = “width”;

vertSizing = “bottom”;

//

hi

Menu Item Icon Arrays

e Define a profile with the following settings:

new GuiControlProfile (aProfileName) {

//

Chapter i 2

511

Part Ill

Table 12.13.

Sample image of menu

icons.

512

Game Elements

hasBitmapArray = true;

bitmap= “path to bitmap array graphic”;

};

e Provide an image file with the structure in Table 12.13.

ww 0 Checked Not-Checked Inactive

Mark Mark Checked Mark
eo oS

CoM CM 1 Optional Optional Optional
dt at Icon 0 Icon 0 Icon 0

Sa Bay

N Optional Optional Optional

Icon N Icon N Icon N

In effect, a GuiMenuBar can have any number of icon rows, but the first (0) row

is normally reserved for the “checked” icons. You can of course use any icon for

“checking” that you wish, and you can use those icons elsewhere, too.

GuiMenuBar Guidelines/Rules

The following guidelines/rules apply when building menus.

Place and size the initial menu bar using the GUI editor.

Open the .gui file (or use a separate .cs) and write code to populate the

menu.

R
o
e

Text values for menus and menu items should not start with a digit.

Menu items may optionally have accelerators.

Menus and menu items may be enabled and disabled from script.

Menu items may have separator lines (-) between them.

N
O
M

B
w

Text for menus and menu items can be dynamically changed from
scripts.

Menu items can be hidden.

Menu items can have checkbox behavior and radio behaviors, including
the display of a currently checked image in the menu.

10. Menus and menu items can be identified or referred to either by their text

or ID.

11. Hierarchical (cascading) menus are not supported.

12. Menus do not support accelerators (only menu items support this).

Standard TGE GUI Controls Chapter 12

Menus and Menu Items

GuiMenuBar supports only one level of menu; i.e., it does not support cascad-

ing menus, just dropdowns. The parent items in the main bar are referred to

as menus, whereas the dropdowns are referred to as menu items. In order to

use the GuiMenuBar, it must have menu items to select. To add menu items,

we need menus. So, let’s learn how to add menus first.

Adding, Removing, and Clearing Menus

The normal order of operations for adding menus to the GuiMenuBar is as

follows.

// 1 - Clear all menus from menu bar

myMenuBar.clearMenus ();

// 2 - Add a new menu

myMenuBar.addMenu(“Test0” , 0); // Add menu ‘Test’ as menu ID 0

//.. repeat step 2

Later, we can clear the menu again if we wish, destroying all contents, or we

can remove just one menu.

myMenuBar.removeMenu(“Test0”); // Can use name or ID of menu

Adding, Removing, and Clearing Menu Items

Now that we have menus in place, we can add our menu items.

// Add new menu items to “Test 0” menu

myMenuBar.addMenulitem(“Test0” , “SubMenud”, O);

myMenuBar.addMenultem(0 , “SubMenul”, 1);

//

//.. repeat for other menus

In the above example, we have added two menu items to menu “Test0”. When

adding these menu items, we can refer to menu “TestO” by name or by its

numeric ID (0, in this case). Be aware that each menu item has a per-menu

unique ID, not a completely unique ID; that is, menu items in different menus

may have the same IDs, but menu items in the same menu may not.

As with menus, we can both clear menu items (this removes al] menu

items from a single menu), or we can remove a specific menu item.

myMenuBar.clearMenultems(“Test0”); // Can use name or ID of menu

myMenuBar.removeMenuItem(“Test0” , “SubMenud0”); // Can use names or IDs

513

Part It

514

Game Elements

Adding Bitmaps and Dividers

In addition to adding normal text to our menu items, we can add dividers.

// This adds a divider as item 2

myMenuBar.addMenultem(“Test0” , “-”, 2);

We can also add bitmaps.

// Use row 4 bitmaps

myMenuBar.setMenultemBitmap(“Test0”, “SubMenul” , 4);

The above statement says to display one of the bitmaps found in row 4 of the

bitmap array specified in this GuiMenuBar’s profile. Rows start at 0 and have

three columns—normal, selected, and inactive. Accordingly, menu-item states

determine which bitmap in the row is used.

Bitmaps can be changed or removed at any time. To remove a bitmap, sim-

ply pass an index of -1 as the row number to the above method as follows.

// Remove bitmaps

myMenuBar.setMenultemBitmap(“Test0”, “SubMenul” , -1);

Accelerators and Check Groups

Like buttons, menu items can be accelerated. Also, if we want to add a radio-

button list to a menu, we can. The addMenuItem() method comes with two

optional arguments. Thus, to add an accelerated menu item, we would do the

following.

// Add an accelerated menu item that will activate

// if CTRL + H are pressed

myMenuBar.addMenuItem(“Test0” , “Help”, 3, “CTRL H”);

If we wanted to make items part of a radio group, we could do this:

// Make a three choice radio group

myMenuBar.addMenultem(“Test1” , “Option 0”, 0, “”, O);

myMenuBar.addMenultem(“Testl” , “Option 1”, 1, “%, 0);

myMenuBar.addMenulItem(“Testi” , “Option 2”, 2, “”, O);

In the above example, we have three nonaccelerated items that are all part of

the same check group, which is zero. Check groups must be unique within

any menu but may be reused between different menus.

It is acceptable to use a check group of -1. This means that the checked

item will behave like a checkbox instead of a radio control.

Standard TGE GUI Controls Chapter 12

Hiding Menus and Menu Items

GuiMenuBar is designed with context sensitivity in mind. Thus, we may want

to hide menus or to deactivate them based on our current context. A menu

can be (de)activated as follows.

myMenuBar.setMenuEnable(“Test0”, false); // deactivate

This will make the menu unselectable. Also, the menu text will now display

in the profile-specified inactive color (fontColorNa). If it is not enough to

enable/disable the menu, we can also (un)hide it.

myMenuBar.setMenuVisible(“Test0”, false); // hide this menu

Similar features are provided for menu items.

// deactivate

myMenuBar.setMenultemEnable(“Test0”, “SubMenul” , false);

// hide SubMenul

myMenuBar.setMenultemVisible(“Test0”, “SubMenul” , false);

Remember that, when a menu item is inactive, the inactive version of the

bitmap will be displayed if a bitmap is used for this item.

Modifying Menu and Menu-Item Text

Also in line with context sensitivity is the idea of changing menu and menu-

item text. This can be done as follows.

myMenuBar.setMenuText(“Test0”, “TestMenu0”);

myMenuBar.setMenulItemText(“TestMenu0”, “SubMenu0”, “TestSubMenu0”);

Script Check Selection

We can force a checkable item to be (un)checked from script by using the

setMenultemChecked() method.

// check item 1

myMenuBar.setMenuItemChecked(“Test1”, “Choice 1”, true);

onMenuSelect ()

When a menu is selected, the engine will first attempt to execute the callback

onMenuSelect (). Then, it will open the dropdown menu containing the
515

Part {it

516

Game Elements

menu’s menu items. This ordering allows us to modify the menu’s contents

prior to its display. The onMenuSelect () callback is documented in Appen-

dix A.4, “GUI Controls Quick Reference.”

onMenulItemSelect ()

Lastly, we need a callback to tell us when an menu item has been selected.

It is the onMenuItemSelect () callback that does this for us. This callback

is called after the menu item is selected and the mouse button is released. It,

too, is documented in Appendix A.4, “GUI Controls Quick Reference.”

12.10.2 GuiPopupMenuCtrl

This is a traditional pop-up menu. When a left mouse click is applied to this

control, a list will pop up. This list will either be above or below the control

depending on its placement, how many entries are in the list, and the near-

ness of the bottom of the screen (not parent). In the case that the list is taller

than the height of the screen or maxPopupHeight, it will scroll automatically.

Additionally, each text entry can be themed with a coloring scheme.

Creating a GuiPopupMenuCtrl

The GuiPopupMenuCtrl has only one new field. Its purpose is to control the

height of the pop-up menu. With it, we tell the contro] the maximum number

of entries it may display.

new GuiMenuBar(myPopupMenu) {

maxPopupHeight = 4; // Show only 4 entries at a time

//

}e

Scheming

No, this is not how we turn the pop-up menu into some kind of evil con-

trol with nefarious purposes. Instead, think in terms of font formatting. The

GuiPopupMenuCtrl gives us the ability to create font-formatting schemes. We

can scheme individual entries. With a scheme, we can specify the font colors

for the standard states—enabled, selected, inactive.

myPopupMenu.addScheme(1, “0 0 0”, “255 0 0”, “64 64 64”);

Here, we have create a numbered scheme (1), with an enabled color of black,

a selected color of red, and a disabled/inactive color of dark gray. Scheme 0 is

reserved for the values provided in the profile.

Standard TGE GUI Controls Chapter |2

Skinning

This control is partially skinnable and uses the same skin as the GuiScrollCtrl.

Adding Entries

Adding entries to the pop-up menu is simplicity itself. Below, we add two

entries to our pop-up menu. The first uses the default scheme, and the second

uses the scheme we created above.

myPopupMenu.add(“Entry 1”, 0, 0); // Entry Text, ID, Scheme

myPopupMenu.add(“Entry 2”, 1, 1); // Entry Text, ID, Scheme

Modifying Entries and Current Button Text

When a menu entry is selected, the text in that entry replaces whatever text

was previously displayed on the pull-down menu button. Subsequently, we

can modify this value using the setText () method. .

myPopupMenu.setText(“New Text”); // Display “New Text” on button.

Additionally, once we’ve selected an entry, we can change the text of that

entry.

myPopupMenu.replaceText(“Yo”); // Change selected entry text to “Yo”

Navigating

We will on occasion wish to navigate our pull-down menu from script. TGE

provides the ability to find an entry by text:

myPopupMenu.findText(“Yo”); // Return entry number of first “Yo”

text by ID:

// SentryText now contains “Entry 2”

sentryText = myPopupMenu.getTextByID(1);

ID of currently selected:

// Return ID of current selection (-1 for none)

myPopupMenu.getSelected();

and text of currently selected:

// Return text of current selection (“” for none)

myPopupMenu.getText ();

517

Parc It

518

Game Elements

Lastly, we can set the current selection from script.

myPopupMenu.setSelection(1); // Select entry with ID 1

Starting Over

Although this control is not as configurable as a GuiMenuBar, it can be cleared

using the clear() method. This will remove all entries and all schemes,

allowing us to start from scratch.

Sorting

This control can be sorted alphabetically using the sort () method.

Calibacks

The order of calls may be a little tricky if you don’t understand it. There are

three entry points to the callback stream for this control.

1. If the user opens the menu and clicks on an entry, the order of events is as

follows.

e Menu closes on click (not button release),

e If valid selection, onSelect() is called, else onCancel () is called.

« If command field was specified, specified script is executed.

2. Jf a script chooses the selection via the setSelection() method:

e if valid selection, onSelect () is called, else

e onCancel() is called followed by command script if it was specified.

3. If a script forces the onAction() callback via the forceOnAction ()

method:

e if command field was specified, specified script is executed.

myPopupMenyv.forceOnAction();

12.11 Sliders and Scales

This section describes the controls used for sliders and scales.

12.11.11 GuiFilterCtrl

This odd control allows us to specify a multi-knotted spline-like GUI that can

be used to create a vector of floating-point values (one per knot), where each

value is between 0.0 and 1.0. The contro] can be used both as an input device

and as a feedback device (we can set the position of each knot from script).

Standard TGE GUI Controls

Creating a GuiFilterCtrl

When creating this control, we need to specify an initial number of knots (two

at a minimum). We can also specify the initial values for these knots.

new GuiFilterCtrl(myFilter) {

controlPoints = 3;

filter= “0.0 0.5 1.0%; // Initial positions left-to-right

//

i

It is perfectly legal to change the number of control points a filter has at a later

date by simple assignment.

myFilter.controlPoints = 4;

Using for Input

This control is normally used for input. The user can click on a point and drag

it up or down. At any time, we can retrieve the current positions of the knots

from script as follows.

myFilter.getValue();

The knot values are returned in a vector of space-separated floating-point

values, where the first entry is knot 0 (left), and the last is entry is knot.N - 1

(right), where N is the total number of knots.

Using for Output

This control can be updated from script and used as a feedback mechanism.

The update is accomplished by passing a new vector of knot values to the

control.

myFilter.setValue(“ 0.25 0.33 0.66 1.0”);

If you intend to use a filter as an output-only control, you should fully cover

the “face” of the filter with another control to block mouse inputs.

Identity Crisis!

OK, the control doesn’t experience mental breakdowns, but we may want to

“straighten” it out on occasion. By calling the identity() method, we can

force the control to align its knots on a 45-degree line from 0.0 on the left to

1.0 on the right.

Chapter |2

519

Part Ill

520

Game Elements

12.11.2 GuiSliderCtrl

This is a numeric slider control. It allows a value between a lower and upper

range to be selected using a sliding interface.

Creating a GuiSliderCtrl

When creating this control, we need to specify an initial number of ticks, ini-

tial ranges, and the initial value.

new GuiSliderCtrl(mySlider) {

// 5 inner ticks and two outer ticks == 7 total ticks

ticks = 5;

// Range: [-1.0, 1.0] inclusive

range = “-1.0 1.0”;

// Start at 0.0

value = 0.0;

//

}e

Like the filter control, we can adjust these values later in script by simply

assigning them:

mySlider.ticks = 3;

mySlider.range = “0.0 1.0”;

mySlider.value = 0.25;

Getting Data

We can peek directly at the value, or we can call the method getValue().

The method is provided to enable consistent coding.

if(mySlider.value == mySlider.getValue()) {

echo(“This is always true”);

altCommand

This control executes the script specified with the command field when the

slider is released, and if we specify a script in altCommand, that script is

executed every sim tick while this control is “active” and selected.

Standard TGE GUI Controls Chapter 12

12.11.3 GuiTextEditSliderCtrl

This is another floating-point slider control, but it uses up-down buttons

instead of a left-right slider. This control is a bit more flexible in terms of its

output, as it uses a standard-C printf-style formatting string.

Creating a GuiTextEditSliderCtrl

When creating this control, we need to specify an initial format, initial ranges,

and the step increment:

new GuiTextEditSliderCtrl(mySlider) {

format = “%$5.5f"; // Standard-C sprintf formatting is used

range = “-5.0 20.0” // Range: [-5.0, 20.0] inclusive

increment = 0.25; // In-/De-crement in steps of 0.25

//

i

This may be sounding repetitive by now, but these values can be changed by

assignment at any time.

12.12 Miscellaneous Controls

This section describes various other controls you might wish to use.

12.12.1 GuiCursor

TGE allows us to define our own cursors, using a simple image file and some

information defining the location of the cursor’s hot spot. In order to use a

custom cursor, tell the canvas to activate it using the Canvas.setCursor ()

method.

new GuiCursor(HOWCrosshair) {

hotSpot = “30 30”;

‘bitmapName = “./cursorImages/HOWCrosshair”;

he

12.12.2 GuiDirectoryTreeCtri and
GuiDirectoryFileListCtrl

Torque comes with two controls that are designed to be used in tandem but

that can be used separately. I will be describing them together, but once we

are done discussing them, you should not find it too challenging to separate

them.

521

Part Ill

522

Game Elements

The first of these controls is GuiDirectoryTreeCtrl. It is used to display the

folder structure of a specified directory and subdirectory in our game’s “mod

path” (directories that our game can see).

The second control is GuiDirectoryFileListCtrl. It is used to display a list of

files. At first, this might seem redundant to the GuiTextListCtrl. However, the

GuiDirectoryFileListCtrl is able to auto-populate once we specify a directory

to look in, making it nicer to work with for this case.

Creating These Controls

Both of these controls must be created as children of their own GuiScrollCtrl.

If we do not do this, the controls will not expand correctly and will generally

look bad. Beyond that, there isn’t much involved with setting up the default

version of each control.

If you are customizing your controls, you are allowed to modify the skin

texture for the GuiDirectoryTreeCtrl. So, let’s talk about that next.

Skinning GuiDirectoryTreeCtri

* Define a profile with the following settings.

new GuiControlProfile (aProfileName) {

// 4...

hasBitmapArray = true;

bitmap= “path to bitmap array graphic”;

}i ‘

e Provide an image file with the structure in Table 12.14. J have shown the
image map twice, both uncut (left) and cut (right). If you are modifying

this to match your own art or theme, be very careful to maintain the pixel

ratios of the original bitmap array.

e Provide an open-folder and a closed-folder icon. These icons must be

located as follows:

¢ Open-folder image Q must be named “/common/ui/folder.png”.

* Closed-folder image GQ must be named “/common/ui/folder_closed.png”.

e Provide a leaf-node icon image a2 named “/common/ui/default.png”.

Scripting GuiDirectoryTreeCtrl

This control is a child of the GuiTreeViewCtrl (see Section 12.12.15), so it

inherits all of that control’s functionality. Additionally, it adds two new meth-

ods and a callback (Table 12.15).

Standard TGE GUI Controls Chapter 12

Table 12.14.

Skin texture for directory
Branch back. tree.

Branch to file/folder.

Branch to folder.

Root branch close button (single-branch),.

f
: Root branch close button (multi-branch).

Final folder close button.

Middle branch close button.

Root branch open button (single-branch).

Root branch open button (multi-branch).

Bottom branch open button. 2

e
0
9
0

9
2
5
-
7

 He

e
+
e

|
e
H
)

Middle branch open button.

Down branch connector.

6 No branches button (empty tree).
523

Part Ill

Table 12.15.

Methods and callbacks for

GuiDirectoryTreeCtrl.

Table 12.16.

Method for

GuiDirectoryFileListCtrl.

524

Game Elements

setSelectedPath(path) Set the path (which will be traversable) to path.

getSelectedPath() Return the path that is actually selected (if any).

onSelectPath(path) This is called when the users clicks on a directory

in the tree and passes the full path to that

directory.
Please be aware that, although the methods in Table 12.15 sound similar, one

is being used to initialize the tree and the other is returning a selection (if

any), which is not exactly the same.

Scripting GuiDirectoryFileListCtri

This control is also a child of the GuiTextListCtrl, so it inherits all of that

control’s functionality. Additionally, it adds two new methods (Table 12.16).

setPath(path [, filter]) | Display all files in the specified path optionally
matching the specified filter.

 getSelectedFile() Returns the currently selected file name, if any.

It is very important to remember that this control inherits the click behavior

of its parent and thus will execute any script that has been specified in its

command field when the user clicks on a valid line in the control.

Filtering

Filtering uses the same string-matching rules that we discussed earlier when

we learned about Torque’s string-manipulation functions in Chapter 10,

“Gameplay Scripting.” The important thing to remember is that filenames

have the path stripped off before the comparison happens, so we can use the

filter to exclude flat file names only. For example, to display all GUI files, our
” filter would be “*.gui”.

12.12.3 GuilnputCtrl

This control is used to capture all input events. Input events in this case are

such things as mouse clicks and/or keystrokes. For every input event, a single

callback is fired.

Standard TGE GUI Controls Chapter | 2

Getting It All

Understand that, if you use this control any place in the current interface, it

will capture all inputs, period. This control can be a rather nasty one, but it

serves its purpose, and we can remove it when we don’t need it any longer.

Creating

To create one of these, we could use this snippet:

new GuilInputCtrl(gsTestInputCtrl) {

profile = “GuilInputCtrlProfile”;

he

All Your Base Are Belong to Us

OK, I don’t really mean all your base(s); I mean all your inputs. Once created,

this control sinks all device inputs. For every input, the following callback is .

called.

onInputEvent(%this, *deviceString, %actionString, %makeOrBreak)

This callback takes the following arguments.

* %deviceString. A string specifying the device name: keyboard, mouse0, etc.

¢ tactionString. A string specifying the action: a, b, tab, button0, etc.

¢ tmakeOrBreak. Only applies to release of special device buttons and mod-

ifier keys, false for all others.

Because it would be sheer madness to try to cover all the inputs and what they

mean, a GuilnputCtrl sampler has been provided to allow you to see what the

inputs are. You will find it in the GUI Sampler part of the kit. To see it, run the

GPGT Lesson Kit and select GUIs Sampler > GuilnputCtrl.

12.12.4 GuiMouseEventCtrl

This control is used to capture a large variety of mouse inputs. The design-

ers of TGE decided to limit each control to only capture and react to inputs

that were normally pertinent to that control. However, they knew that special

cases would arise in which the user might want to capture a large variety of

inputs. Thus, the GuiMouseEventCtrl was born. It captures all of the follow-

ing events.

Left Mouse Button Press Left Mouse Release Left Mouse Drag

Right Mouse Button Press Right Mouse Release Right Mouse Drag

Mouse Move Mouse Enter Mouse Exit

525

Part Ill

526

Game Elements

Additionally, it handles the following modifiers.

Left Shift Right Shift Either Shift
Left Control Right Control Either Control

Left Alt Right Alt Either Alt

Please note that a drag is mouse motion with a button pressed, entering

means to enter the bounds of the control, and exiting means to leave the

bounds of the control. Mouse moving is like dragging but without the but-

ton pressed.

Configuring

There isn’t much involved in setting up one of these controls. Simply place it

as a child of any other control and be sure it covers the hot area where you

want events to be recorded. You can even make a GuiMouseEventCtrl a child

of another GuiMouseEventCtrl if you need to.

GuiMouseEventCtrl Callbacks

To acquire information from this control, write a set of general callbacks

scoped to GuiMouseEventCtrl or specific ones scoped to the name of your

control with the following form.

function myMouseEventCtrl::EVENT NAME(%theControl ,

modifiers ,

Spoint ,

Sclicks) {

// ...

This callback will respond to an event EVENT_NAME and will receive

e any modifiers (SHIFT, CTRL, ALT keys that are pressed at time of the
event),

e the location of the mouse relative to the <0, 0> in the canvas (not the

GuiMouseEventCtrl control), and

e the number of clicks that were recorded within the last half-second (0O—no

clicks, 1—single click, 2—double click, etc.).

EVENT NAME

The possibilities for EVENT_NAME are shown in Table 12.15.

Standard TGE GUI Controls Chapter 12

onMouseDown Left mouse button pressed. GuiMouseEventCtrl

onMouseUp Left mouse button released. callbacks.

onRightMouseDown Right mouse button pressed.

onRightMouseUp Right mouse button released.

onMouseMove Mouse moved while no button is pressed.

onMouseDrag Mouse moved while feft mouse button is pressed.

onRightMouseDragged Mouse moved while right mouse button is pressed.

onMouseEnter Mouse entered control region.

onMouseLeave Mouse exited control region.

Smodifiers

The modifiers argument is a bitmask that can be logically compared

against the values in these global variables:

SEventModifier::LSHIFT SEventModifier::RSHIFT

SEventModifier::SHIFT
SEventModifier::LCTRL SEventModifier: :RCTRL SEventModifier: :CTRL

SEventModifier::LALT SEventModifier: :RALT SEventModifier::ALT

Note that the unadorned version of SHIFT, CTRL, and ALT -will compare

true if any key of this variety is pressed.

The code to check for a specific modifier or set of combined modifiers

looks like the following.

if(modifier & (S$EventModifier::LSHIFT | $EventModifier::ALT) ==

(SEventModifier::LSHIFT | SEventModifier::ALT)) {

echo(“The LEFT shift key is pressed and one of

the ALT keys is pressed.”);

}.

$point

The first time you use this control, you may be disappointed to find that the

click point that is passed into the callback is always relative to <0,0> in the

canvas. Don’t worry, though. If you need to calculate the position of the click

relative to the upper-left corner of the control that captured it, simply use a

script like the following.

function myMouseEventCtrl::onMouseDown(%theControl , %modifiers ,

Spoint , %clicks) {

527

Part Ill

Figure 12.15.

Left-aligned tree views.

a. Simple tree.

Eh) «1: ReatSeoup - SumBsoup

RD 1027. ActreActiontdapSat- SinSet

| Sa 1028 DhestAmayySet. SimSet

| Bea 1020. UgntSet. Sumset

| Ba 1090: way uintSet. SimSat

| By 1035 tRepiicatarSet- SimSet

| BY 1052: FatlageSet. SimSet

SL) 1033 ActionMapOroug - SimOreup

| (2) 1004: cliontGsoup - SienGroup

BH) 1096: acidseup - SimOroup

5) 1096. duidstadroup- Simoreup

|) 1097. rePGrous - Simoroup

| (CJ 1020: ClientConneationsroup. Simore

| (2) 1020- ChunkFtleGeoup - SimGraup

| (2) 10-43: DateltecOroup . SimOroup

| By toed MateralPrepertyiap- MatenalP
b. Elaborate tree

{inspector-specific).

528

Game Elements

stmpControl = %StheControl.getGroup();

sOffset = Spoint;

while(isObject(%tmpControl))

{
sOffset = vectorSub(%Offset , StmpControl.position);

StmpControl = stmpControl.getGroup ();
.

//

This code iterates upward through each parent until we get to the root con-

trol, and along each iteration it subtracts the position of that control relative

to its parent from the original click point. By the end of this loop, the variable

%0ffset contains the position of the click relative to the <0, 0> coordinates

of the control myMouseEventCtrl.

clicks

The last argument is the click count. When we click in this control, the control

will increment an internal click counter to 1. Then, it will add any subsequent

clicks to this counter for the next half-second. After that time, the counter

goes back to 0, then 1, and accumulates for another period, ad infinitum. The

purpose of this mechanism is to allow us to differentiate clicking styles—i.e.,

single click, double click, triple click, etc.

12.12.5 GuiTreeViewCtrl

This control is used to display a left-aligned tree. We are accustomed to seeing

these used for displaying directories and data where there is some hierarchy

and/or inheritance associated with the data.

Although this control can be used to make simple and elaborate trees

(Figure 12.15), I will only be discussing how to make simple trees. Why?

Because the elaborate tree mechanism was added to enable the creation of

a more detailed Inspector tool. Therefore, the only icons available are those

used by the Inspector.

I’ll list the syntax for the elaborate tree, but you will have to dig into the

engine if you want to try to use it for your projects. By that time, you would

likely be expanding the icon list anyway, so further discussions between us on

this topic would be a wash.

Creating a GuiTreeViewCtrl

To create a tree view, simply create a GuiScrollCtrl and then add an instance of

GuiTreeViewCtrl as a child. The tree view relies on the scroll control to handle

resizing and, as you might imagine, scrolling.

Standard TGE GUI Controls

Configuring GuiTreeViewCtrl

Depending on how we want to use this tree, there is either very little to do or

a great deal to do. We will start off talking about the basics and then move on

to the harder stuff.

To set up the tree, we must specify a few fields. Those fields have the

functions and effects shown in Table 12.16.

Chapter | 2

Fields for setting up a tree tabSize This is the pixel size used to indent subtree items.

textOffset This is the pixel offset between the end of the tree image

and the text describing a level in the tree.

fullRowSelect If this value is true, a row may be selected anywhere

parallel to the item; otherwise, the user will be required to
click directly on the text or icon to select it.

itemHeight Not adjustable, but specifies the height of a line and is
based on the tallest item in the line.

destroyTreeOnSleep If set to true, the tree is reset every time it goes to sleep.

mouseDragging You may ignore this field.

multipleSelections Allows the user to highlight multiple entries in the tree.
Skins and Icons for GuiTreeViewCtri

This control uses the same bitmap array, folder open/closed icons, and leaf

node icon as are used for the GuiDirectoryTreeCtrl (Section 12.12.2). Please

refer to the skinning directions for that control to learn more about the basic

skin and icons used here.

Elaborate Icons

This control may also display a limited set of predefined icons. Please note

again that the purpose of this feature is to support the new Inspector, which

has nice icons depicting various object types.

If you want to start digging and modifying this feature to use in your own

creations, one of the first things you will have to do is build a library of icons.

A GuiTreeViewCtrl will try to build an icon library every time it wakes

up by calling the callback onDefineIcons(). If you want to include icons

in your tree, you should create the icons and store them in a fixed location.

Then, use a callback to build the control’s icons library as follows.

function GuiTreeeViewCtrl::onDefineIcons(%theControl) {

%icons = “path/icon_ file name0” @ “:” @

view.

529

Part Itl

Figure 12.16.

Newly inserted entries.

entry 1

one entry 2

L entry 5

entry 3

L entry 4

530

Game Elements

“path/icon_ file namel” @ “:” @

“path/icon_ file name2” @ “:” @

“path/icon_ file _name3” @ “:” ;

StheControl.buildiconTable(%icons);

Adding Items to a Tree

We may populate a tree in one of two ways. We can either manually add new

items (lines of text) to a tree, or we can use the tree to open a SimSet. Let’s

discuss the manual method first.

To manually add an item to an existing tree, we simply write some code

like the following

smyTree.insertItem(0 , “Item Text”);

This statement will insert a new item into the tree and attach it to root (entry

0). This item will display the string “Item Text” in the tree.

Parent Indexes

When manually adding elements to a tree, each item added to the tree is

assigned an index. Later, when we want to add a new item into the tree, we

must remember this index and add our new element to the index. Please note

that indexes are never reused for any individual tree.

For example, the following script will produce a tree like Figure 12.16.

// Creates index 1 attached to root (0)

smyTree.insertItem(0, “entry 1”);

// Creates index 2 attached to 1

smyTree.insertItem(1, “entry 2”);

// Creates index 3 attached to root (0)

smyTree.insertItem(0 , “entry 3”);

// Creates index 4 attached to 3

smyTree.insertItem(3 , “entry 4”);

// Creates index 5 attached to 2

emyTree.insertItem(2 , “entry 5”);

You should note that the insertItem() method returns the index for the

element it just inserted, so you don’t have to count or anything heinous like

that. Instead, just save the return values if you need them at all.

Standard TGE GUI Controls

Assigning a Value

It is possible to give each entry a value in addition to text. This value can later

be retrieved and can be any valid string. To create an item with a value, do

the following.

eémyTree.insertItem(0 , “entry 10”, “oops”);

If we called this on the tree we just created, the tree would have a new folder

with the text “entry 10”, and it would have a value of “oops” stored at that

entry (not visible). (See Figure 12.17.)

If we recall the above discussion of “Parent Indexes,” it will also be clear

that the ID of this item is 6, as in the sixth item we have added.

Inserting Icons

In order to use icons in your image (instead of the default folders), use the

insertItem() method.

smyTree.insertItem(0 , “some text”, “Sun”);

This code will produce a tree entry with the “Sun” icon. The full syntax of

insertItem() is as follows.

insertItem(parent id, text [, value , iconString ,

normalimage , expandedimage]);

Opening a SimSet

The second way to populate a tree is to have it open a SimSet. To do so, simply

use the method described in Table 12.17.

open(setID [, editable]) | This will populate a tree with the contents of
a SimSet identified by set ID. This set will be
traversed, and all sets within will be traversed,
until all branches have been followed to a
leaf. Optionally, we enable or lock the SimSet
by passing true or false in the position of

editable. If the set is locked, we won't be
able to use tree methods to modify it.

A sample open looks like the following.

// Open a SimSet and lock it (not modifiable)

smyTree.open(*mySimSet , false);

Chapter | 2

Figure 12.17.

Entry inserted at énd of list.

entry 1

nN entry 2

L entry 5

LG entry 3

L entry 4

F
r

 — entry 10

Table 12.17.

Opening a SimSet.

531

Part ill

532

Game Elements

Clearing Trees

We can empty a tree from script as follows.

SmyTree.clear();

This will empty the tree of items, but it will not modify any SimSet that may

have been loaded. |

Counting Items

It is possible to count the number of items currently in a tree as follows.

echo (“myTree has ”, %SmyTree.countItems () “items in it.”);

For our current tree, the above code would produce the following.

myTree has 6 items in it.

Finding Items

Once we have a tree, we can search for items in the tree by name as follows.

$item = %myTree.findItemByName (“entry 10”); // Returns 6

If this were called on the tree we created above, the variable $item would

contain the value 6.

Querying Items Directly

Once we have an item ID, we can get information about the item’s text and

value as follows.

etext = %myTree.getItemText(%item); // Sitem contains 6

$value = %SmyTree.getItemValue({ %item); // %item contains 6

echo(“Tree entry: ”, Zitem , “ has text label: ” ,

text , “, value: ”, %value);

Assuming we are writing these sample snippets in order, the above code will

produce the following.

Tree entry: 6 has text label: entry 10, value: oops

Editing Items

Jt is possible to manipulate the contents of an item after we add it like this,

resulting in the new tree shown in Figure 12.18.

Standard TGE GUI Controls

smyTree.editItem(ZSitem , “entry 6” , “fixed”);

Now, if we reran our prior query code, we would get the following.

Tree entry: 6 has text label: entry 6, value: fixed

Don’t forget that, if we opened a SimSet in the locked state, this will not

work—1.e., no changes will be allowed.

(De)jselecting items

The user may select and deselect an item from the tree using a mouse, key-

board, or other device, but sometimes we will want to modify selection states

from script.

To select an item in our list we do the following.

smyTree.addSelection(%item ; // “entry 6” now selected

Or we can set the selection/deselection status of an item as follows.

$myTree.selectItem(%item , false); // “entry 6” is deselected

It should be noted that addSelection() does not return a value, but

selectItem() will return true or false to indicate success or failure (bad

item or unable to modify).

On the flip side, we can deselect the previously selected item (as we just

did with selectItem()).

smyTree.clearSelection();

Or we can target a deselect.

// De-select “entry 6” (already not selected)

smyTree.removeSelection(%item);

Neither of these two methods returns a value.

Querying Selected items

Once an item is selected, it is possible to query that item as follows.

sitem = myTree.getSelectedItem(); // Will be 0

Chapter | 2

Figure 12.18.

Editing an entry (item).

entry 1

entry 2

L enty 5

ais entry 3

LL entry 4 — entry 8

533

Part Ill Game Elements

It should be noted that, in the case of multiple selections, this will only ever

return the ID of the last selected item, and if no items are selected, it will

return 0.

Expanding Items

Another manipulation that we might want to do from script is the expansion

and collapse of the tree or a branch of the tree. This can be achieved as fol-

lows, producing the results shown in Figure 12.19.

smyTree.expandiItem(1, false); // Collapses branch 1

smyTree.expandItem(3 , false); // Collapses branch 3

smyTree.expandItem(4 , true); // Expands 3 and then 4

Figure 12.19.

Collapsing and expanding

folders.

534

entry 1

entry 3

entry 8
... collapses... +s. expands...

Removing Items

So, what about removing items? Easy. We can remove an item using its index.

smyTree.removeItem(6); // Remove item that we labelled “entry 6”

Or we can remove the current selection.

smyTree.addSelection(1);

‘smyTree.deleteSelection() ;

In either of these cases, if we had instead opened a SimSet, and if we had

locked it, no deletions would be allowed.

String Operations

There is a cool feature that is often used to create paths and other constructs:

smyString = tmyTree.getTextRoot(4 , “/”);

echo(%SmyString);

This code will produce the following output.

Standard TGE GUI Controls

/Jentry 3/entry 4

Please note, the second argument in the above call to getTextRoot () is an

optional delimiter and can be a String.

Tree Relationships

To round out the GuiTreeViewCtrl’s set of methods is a short list of meth-

ods used for getting item IDs based on an item’s position in the tree

(Table 12.18).

Chapter } 2

Hai tier io aces ie os

Returns the ID of the first child of this item, or 0 if
item has no children.

i
getChild(item)

getParent(item) Returns the ID of the parent of this item, or 0 if item
IS root.

getNextSibling(item) | Returns the ID of next entry in same branch as item
(below item), or 0 if no such entry- exists.

getPrevSibling(item) | Returns the ID of prior entry in same branch as item (above item), or O if no such entry exists.

GuiTreeViewCtri Callbacks

No control would be complete without adding a few callbacks. GuiTreeViewCtrl

is no exception and adds the callbacks shown in Table 12.19.

Table 12.18.

Getting item IDs.

onAddSelection(ID)

onDeleteSelection({) ... an item is deleted.

onInspect(id) Same as onSelect () except only called on leaf

nodes. °

onRemoveSelection(item) ... Ltem is deselected.

onRightMouseDown(x, y , ... Mouse is clicked over a SimSet object item.
id) Passes in <x,y> position of click and object ID.

onRightMouseDown(x , y) | Sameas above for non-SimSet trees.

onSelect(id) ... an item is selected in the tree. id will contain

the node’s text for a normal list, the field name for

SimSets when the selection is not an object, and

the ID of an object if the selection is an object.

onUnselect(id) Reverse of onSelect ().

Table 12.19.

Callbacks for

GuiTreeViewCtrl.

535

Pari Il

536

Game Elements

12.13 Summary

In this chapter, we covered a massive load of TGE standard GUI topics. This

chapter was structured to teach about GUIs in general and then to lead you

through the various techniques for using the 35 most commonly needed and

used controls (the canvas is a control, too), It is also structured to act as a

reference. In addition, a complete appendix (Appendix A.4, “GUI Controls

Quick Reference”) is supplied that contains almost al! of the information in

this chapter (in a more succinct form) and completely documents all fields,

methods, and callbacks (some of which are not mentioned at all in this

chapter).

In the beginning, we discussed the fundamental concept of the canvas.

We learned about the two categories of controls it contains: dialogs and every-

thing else. We then learned the difference between the canvas’s current con-

tent and the pushing and popping of dialogs which float above that content.

We also learned that all interfaces are constructed by stacking controls on top

of controls, and that stacked controls are the children of the parents they stack

upon.

Our next topic was input capture. We explored the concept of mouse

inputs to GUI layers using the falling marble analogy. Then we examined the

first-responder concept, which is used in older versions of the engine (prior

to version 1.4) to help sort out input rules between controls on the same level

in a layer. Next, we looked at focus and came to understand that focus can

be attained by clicking in a control or by tabbing to it from another control.

Lastly, we looked at modality (also not used after version 1.3), which is used

to force layers to take ownership, or conversely to allow it to be taken away.

Done with general topics (for now), we jumped into a discussion of the

GUI profile. We came to understand that these are templates containing infor-

mation about bitmaps, borders, fill details, fonts, text formatting, and input

behavior, which are specified and then used by subsequent controls to define

basic behavior and presentation.

Finally, we got to our first placeable control, the root class to all controls,

GuiControl. We spent time examining its use of profiles. Then we looked at

how to specify and modify extents, position, and sizing. Next we learned that

any GuiControl or child can be visible or not visible. After that, we talked

about the use of accelerators to tie controls to keyboard and other events.

Then we examined the serious topic of command and altCommand, two fields

that can contain scripts that will be executed at specific times based on the

type of control they are specified for. We also examined the S$thiscontrol

variable, which is set prior to any and all callback/command/altCommand
calls. Lastly, we talked about this contro) being awake, asleep, active, and

inactive, as well as how this affects its and its children’s behaviors.

Standard TGE GUI Controls

Before continuing in our discussion on individual controls, we swung

back and talked about a general topic: skinning. We learned that many con-

trols can be skinned. This led to a discussion of bitmap arrays, the rules for

organizing them, and a walk-through creating one.

For the remainder of the chapter, we blazed our way through control after

control in the following categories.

e Container controls. Frames, scrolls, stacks, panes, tab books, and windows.

e Backgrounds and borders. Bitmap borders, bitmaps versus chunked bit-
maps, and the fade-in bitmaps.

e Text controls. Message vectors, Torque Markup Language text displayers

and edit areas, labels, single-line text edits, and the very useful text list
control.

e« Buttons. Skinned buttons, plain push buttons, and specialized skinned

check boxes and radio buttons.

e Menus. Menu bars and pop-up menus.

¢ Sliders and scales. The specialized spline (filter} control, a horizontal
slider, and a text slider.

e The grab bag (miscellaneous controls). Cursors, directory viewers, an
jnput capturing control, a mouse capture control, and the generic tree

viewer.

If you have examined the samples that come in the GPGT Lesson Kit GUIs

Sampler (start the GPGT Lesson Kit and click the “GUIs Sampler” button to

see these), you will be well on your way to making use of each of these con-

trols to make your own interfaces. To help accelerate this learning, we will

examine the creation of several interfaces as the topic of our next chapter.

Chapter 12

537

Chapter 13

Game Interfaces

13.1 Game Interfaces

As we established earlier, all games have some minimum set of interfaces.

In this chapter, we will design two sets of interfaces that we can later use

when we make games. The purpose of these interfaces is twofold. First, they

are learning aids. We will learn how to make simple interfaces, combining

several basic GUI controls. Second, they can be used over and over for demo

games and prototypes. In the future, we can skip right to working on game

content without needing to deal with the mundane items like menus, splash

screens, etc. Ls
———_—_________,

The interfaces we will be designing in this chapter are as follows.

e Splash screens. Splash screens are those GUIs that get displayed when

the game starts or during interludes. Games may have multiple splash

screens, each providing some information such as game title (screen),
company logos, copyright information, etc. For this sample, there will be

just one splash screen. It will be used to display a hypothetical company

logo.

¢ Menus. As with splash screens, games may have many menus. We’ll keep

our lives simple and provide a single (main) menu.

¢ Credits. Because we don’t want to forget to thank those who have helped
us to create our wonderful game, we’ll need a credits screen. This is like

a splash screen except that it will list our credits information and is usu-

ally not displayed until the end of the game, or on demand from the main

menu. We’ll choose the latter.

At the end of this chapter, we will have made two versions of each of the

above interfaces: one set in a “Toon” theme, which we will make together,

and the second set in a “Tech” theme, which you should make to practice.

After we have created these basic GUIs, we will work together and make

some common HUD interfaces, including the following.

¢ Counters. We will make some generic counters that can be used to track
any numeric information in the game.

¢ Vertical feedback bars. We will make some generic vertical feedback bars

that graphically display the values in the range 0.0 to 1.0.

e Strip compass. Although a good compass should be made in C++, we'll
make one using just standard GUI controls and scripts to prove that you

can in fact prototype just about anything in TorqueScript.

All of the

interfaces we

will discuss in this

chapter are provided

in a completed and

working state in the

GPGT Lesson Kit. You

may view any of them

at any time by running

the GPGT Lesson Kit,

clicking the “Interface

Sampler” button,

and then clicking the

button that has the

name of the interface

you wish to examine.

Additionally, you may

add new interfaces to

this kit. Simply follow

the direction supplied

in Appendix B, “GPGT Lesson Kit Docs.”

NW
539

Part {ll

540

Game Elements

At any time, you may look at the finished product of all interfaces by running

the GPGT Lesson Kit and clicking on “Game Interfaces” from the main menu.

Please note that it is best to create the following examples in order because

I will only give detailed explanations the first time we see something new.

Subsequently, I may gloss over the same topic. Therefore, unless you have

seen the prior explanations, some discussions may be confusing.

13.1.1 Before We Start

Let’s discuss our design method. You can make new interfaces in two basic

ways.

1. You can use the GUI editor and create a new interface. If you’re comfort-

able with this method, please feel free to use it. If you don’t know how to

do this, please go back and review Section 3.14, “The GUI Editor.”

2. I prefer to make my interfaces from a blank template. That is, I’l) take an

interface I already have, copy the .gui file to a new directory, cut out the

fat, and then make sure the new file gets loaded by the client. Once I’ve

done this, I can just pick my new interface out of the named list of current
interfaces and edit it.

In the following pages, we will be making these interfaces and HUDs

using the second method. Unless otherwise specified, the starting .gui files

will all contain the following code.

//--- OBJECT WRITE BEGIN ---

new GuiControl(useAUniqueNameHere) {

profile = “GuiDefaultProfile”;

horizSizing = “width”;

vertSizing = “height”;

position = “O 0”;

extent = “800 600”;

minExtent = “8 2”;

visible = “1”;

};
//--- OBJECT WRITE END ---

For each GUI to be created, take the above code and do the following:

1. Create a directory somewhere under “~ \client\ui\”. For example, in the

GPGT Lesson Kit, the Splash (Toon) iriterface is located under the directory

“~ \client\ui\200_GameGUIs\ggsSplashToon\”.

2. Copy the above code into an appropriately named file. Splash (Toon) is in
the file “ggsSplashToon. gui”.

Game Interfaces

3. Make sure the file is executed from the initClient() function (usually)

located in “ ~ \client\init.cs”,

Now, when we (re)start the GPGT Lesson Kit and start the GUI editor, we’ll

find our newly loaded interface in the existing interfaces list. If you don’t find

it, check the log for errors. I always mistype something; maybe you did, too.

13.2 Toon-Themed Interfaces

Our first set of GUIs will be designed using a sort of carefree cartoon theme.

Yes, I know, the art in Figure 13.1 isn’t that much like a cartoon, but please

bear with me. The thing to concentrate on is consistency in our theme.

Chapter 13

PLAYGROUND
PRODUCTIONS

Splash Screen

Main Menu Credits Screen

13.2.1 Splash (Toon)

Our first interface is very simple. We can make a splash screen with just a

few GUI controls. For this example, we just want our made-up company logo

to be splashed for a few seconds, and then we want to automatically pro-

ceed to the main menu. The perfect GUI control for this kind of screen is a

GuiFadeInBitmapCtrl. Let’s look at how to create this interface.

The Splash Interface

e Make a graphics file in your favor-

ite editor that looks something like
Figure 13.2. The image should be
the highest resolution you expect
the user to play at, or perhaps one

scale larger. Ours is a 1024 x 768
24-bit color image, saved as a JPEG

file. Copy your file, or the one from

the GPGT Lesson Kit, to the direc-

tory where your .gui file is.

e Start the GPGT Lesson Kit.

PLAYGROUND
PRODUCTIONS

Figure 13.1.

Cartoon-themed screens.

Figure 13.2.

Splash screen.

541

Part Ul

542

Game Elements

e Now, using the GUI editor, open the splash screen interface and add a

GuiFadeinBitmapCtrl control with the following parameters.

new GuiFadeInBitmapCtrl(ggsSplashToonFadeinBitmap) {

profile = “GuiDefaultProfile”;

horizSizing = “width”;

vertSizing = “height”;

position = “0 0%;

extent = “800 600”;

minExtent = “8 2”;

visible = “1”;

bitmap = “./splash”;
wrap = “Oo”:

fadeinTime = “1000”;

waitTime = “2000”;

fadeoutTime = “1000”;

done = “0”;

Me

You’ll want to use your own name for the GUI, but it does need a name
because we’re going to write some code for it. The important things to note
are the following.

* horizSizing and vertSizing use “width” and “height”, respec-

tively. This GUI will always resize itself to the extents of its parent.

* wrap is set to false.

e The control will fade in over one second, wait for two seconds, and fade

out over one second.

The Splash Interface Code

Now, we have to make some code to go with this interface. Why? For a few

reasons.

1. We need to set the done parameter to false every time this interface is

added, just to be safe. Otherwise, we could accidentally save the interface

and it would later skip right to done.

2. Once the GUI is done fading out, it won’t actually do anything else automati-
cally. We need to check for the done state and move on to the main menu.

3. We want to allow the user to skip this screen by clicking the mouse, and

this requires a little code.

Setting done to false is easy, but writing code to patrol for done—although

simple—is not a one-liner. In these GUIs, we’ll be using the event-manager code

that is provided with the GPGT Lesson Kit, and separately on the CD (“Base\

Scripts\EGSystems”). If you’re not familiar with it, the event manager is a set of

Game Interfaces Chapter 13

scriptObject classes that manage various kinds of events and sequences. Appen-

dix A.6, “Scripted Systems Quick Reference,” outlines how this code works. In

case this is your first time seeing it, I’ll explain what the code does below.

onAdd() and onRemove ()

It will be the job of onAdd() to set done to false and to create our task

manager. onRemove() will be responsible for destroying the task manager

when the GUI is removed.

function ggsSplashToonFadeinBitmap::onAdd(Sthis) {

sthis.done = false;

6this.taskMgr = newTaskManager ();

sthis.taskMgr.setTarget (sthis);

$this.taskMgr.setDefaultTaskDelay (100);

// add a repeating task to the task manager and start it running

Sthis.taskMgr.addTask(“checkIsDone();”, -1);

This onAdd() console method does the following.

e It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

e It sets the done field to false.

e It creates a new task manager using the newfaskManager() helper

function.

¢ Because we want this task manager to call all functions it executes in
the scope of this GUI (“ggsSplashToonFadeinBitmap”), we'll tell the task

manager to target this (the handle of our GUI).

¢ Also, this task manager will loop continuously, and we want it to use a

default value of 100 milliseconds for the loop.

© Lastly, it adds one task (checkIsDone();) and tells the task manager

that this task is always rescheduled (i.e., it repeats forever).

function ggsSplashToonFadeinBitmap: :onRemove(%this) {

Sthis.taskMgr.stopSelfExecution();

Sthis.taskMgr.clearTasks();

Sthis.taskMgr.delete();

This onRemove () console method does the following.

e It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

e It assumes the task manager is running and stops it. 543

Part ll

544

Game Elements

e It deletes all outstanding tasks in the task manager.

e It tells the task manager to delete itself (the prior two steps were included
to show that they exist, but be aware that deleting a task manager will stop
execution of outstanding tasks, and clear the task list automatically).

onWake() and onSleep ()

Now that we're ready to go, the onWake() method will be responsible for

starting the task manager po}ling, and onSleep() will be responsible for

stopping It.

function ggsSplashToonFadeinBitmap: :onWake(%this) {

// Need to clear this as it only gets set to true

// vy the control

*ethis.done = false;

ethis.taskMgr.selfExecuteTasks(true);

This onWake () console method does the following.

e It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

e It sets done to false again. This is a bit of overkill, but it is the safest
way to deal with this. Now, the GUI is guaranteed to replay every time it
wakes.

e It tells the task manager to start polling (self-executing). The argument

true is telling the task manager to ignore any times specified for tasks and
to instead use the task manager's default value, which we earlier set to 100
milliseconds.

function ggsSplashToonFadeinBitmap::onSleep(sthis) {

Sthis.taskMgr.stopSelfExecution();

}

This onSleep() console method does the following.

e It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

e It tells the task manager to stop.

click()

If you recall, we want the user to be able to click the mouse at any time to

skip this splash screen. The GuiFadeinBitmapCtrl control provides a callback

named click() that is called when the control is awake and the mouse is

clicked. We’ll create an instance of this scoped to our GUI and make it do

some work.

Game Interfaces

function ggsSplashToonFadeinBitmap::click(Sthis) {.

$this.done = true;

This click () callback does the following.

¢ It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

e It sets done to true (we let the checkIsDone() task do all the real work).

The checkIsDone() Task

OK, we’re almost done. The last bit of code is the console method that is sup-

posed to check for done. When done is true, the splash screen will load the

main menu.

function ggsSplashToonFadeinBitmap::checkIsDone(%this) {

if(Sthis.done) { :

$this.taskMgr.stopSelfExecution();

Canvas.setContent (ggsMainMenuTech) ;

This checkIsDone() console method does the following:

e It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

e It checks for done equals true, and if it is true,

« it stops the task manager, and

« it sets the canvas content to the main menu (which we haven't made yet).

13.2.2 Main Menu (Toon)

We now have one working interface. Now, let’s make the main menu

interface.

_ Before you start, make sure you’ve got a template .gui file (like we

described at the beginning of this chapter) in a directory where your main

menu will be located and be sure that it is getting executed.

For this interface, you should use a template like the following (use your

own name for the GUI).

new GuiChunkedBitmapCtrl (ggsMainMenuToon) {

profile = “GuiDefaultProfile”;

horizSizing = “width”;

vertSizing = “height”;

position = “0 0”;

extent = “800 600”;

Chapter 13

545

Part Ill

Figure 13.3.

Graphic for main menu.

Game Elements

minExtent = “8 2”;

visible = “1”;

bitmap = “./back”; // This is the image we’re about to make.

useVariable = “0”;

tile = “0”;

}

The Main Menu Interface

Make up a graphics file in your favor-

ite editor that looks something like

that in Figure 13.3. The image should

be the same as our splash interface

with a few differences. First, there is

no label on this one. Second, it is a

grayscale image. Third, I’ve made it a

bit dark so it provides good contrast

for our buttons (Figure 13.4). Copy

your file (mamed “back.jpg”) or the

one from the GPGT Lesson Kit to the directory where your .gui file is.

For this menu, we’re going to have three buttons: Play, Credits, and Quit.

For each of these buttons, let’s make graphics.

The graphics are going to be used by a bitmap button, so when we make

them, we’ll want to make four versions of each. The versions will be for the

four states: normal, highlighted, depressed, and inactive. For example, our

four Play button images can be seen in Figure 13.4.

Figure 13.4.

Four Play button images.

546

PLAY PLAY
play_n.png play_h.png

PLAY PLAY
play_d.png play_i.png

The images are all 24-bit PNG files measuring 640480. Notice that

“play_ipng” is the same as “play_n.png”. We could in fact just create the

normal, depressed, and highlighted versions of the button and not supply

the inactive one since we don’t need it. However, although the engine will

automatically use the normal image for our missing inactive image if the need

arises, it will print a warning message. I personally don’t like warning mes--

sages, so I always supply a button for all four cases. We could just as easily use

a 1x1 transparent PNG for the inactive button.

Game Interfaces

e Now, start the GPGT Lesson Kit.

e Using the GUI editor, open the main

menu interface. At this point, your

interface should look just like the

first image we made (“back.jpg”).

e Add three GuiBitmapButtonCtrl but-

tons to the GUI and arrange them
so that they line up down the cen-
ter. When you're done, the screen
should look like Figure 13.5.

The Main-Menu Interface Code

There is no separate code file for our main menu. All.the code we need to

write is embedded in the command field for each of the three buttons:

//Play Button =>

command = “quit();”;

//Credits Button =>

command = “Canvas.setContent (ggsCreditsToon) ;”;

//Quit Button =>

command = “quit();”;

Currently, the Play button will quit (or in the case of the GPGT Lesson Kit ver-

sion, it will go back to the “Game GUIs” menu). We’ll change this to a play

interface later when we finish our game.

The Credits button will load our credits interface as the contents of the

canvas, and the Quit button quits.

13.2.3 Credits (Toon)

The next interface we’ll make is the credits interface. This interface is quite

similar to our main menu. In fact, it will use the very same template (obvi-

ously, in a new directory and with a new name). We use the very same JPEG

image as we used for the main menu.

The credits interface is going to load and display the contents of a text file

in an attractive manner. We’re using an external source for the text content,

because this makes it easy to edit and correct mistakes.

The Credits Interface

e Copy your template and the graphics file to a new directory and be sure

that "init.cs” is executing them. ‘

Chapter 13

Figure 13.5.

Completed main menu.

547

Part Ill Game Elements

e Start the GPGT Lesson Kit.

e Using the GUI editor, open the credits interface. It should look just like our
main menu did when we started working on it (see Figure 13.3).

e We're going to use a GuiMLTextCtrl to display our credits. To do this,
we'll need a GuiScrollCtrl as the parent. So, using the GUI editor, add a
GuiScrollCtrl to our credits interface and then make a GuiMLTextCtrl the
child. When you're done, you should have something like the following.

new GuiScrollCtrl() {

profile = “GuiScrollProfile”;

horizSizing = “center”;

vertSizing = “relative”;

position = “150 50”;

extent = “500 500”;

minExtent = “8 2”;

visible = “1%;

willFirstRespond = “1”;

hScrollBar = “alwaysOff” ;

vScrollBar = “alwaysOff”;

constantThumbHeight = “0”;

childMargin = “4 4”;

new GuiMLTextCtrl1 (ggsCreditsToonMLText) {

profile = “GuiDbefaultProfile”;

horizSizing = “width”;

vertSizing = “bottom”;

position = “6 6”;

extent = “500 500”;

minExtent = “8 2”;

visible = “1”;

lineSpacing = “2”;

allowColorChars = “0”;

maxChars = “-1";

};

Me

You'll want to use your own name for the GuiMLTextCtrl, but it does need

a name because we’re going to write some code for it.

e Note that the GuiScrollCtrl uses the following settings.

¢ It uses the default profile. We'll want to change this soon.

* horizSizing and vertSizing of “center” and “relative” respec-

tively. This means that the contro! will resize to take up all of the space

of its parent from top to bottom and maintain an aspect ratio with its

parent horizontally while staying centered.

548 ¢ The scroll bars are both turned off all the time.

Game Interfaces

¢ There is a small child margin.

¢ Note also that the GuiMLTextCtrl has the following settings.

* It uses the default profile. We'll want to change this soon.

¢ It resizes to fit the width and height of its parent.

Before we move on to the credits GUI code, let’s do one more thing. We

want the user to be able to press ESC in-order to return to the main menu.

The easiest way to do this is to create a button that uses the ESC key as an

_ accelerator and then have it positioned off screen. This way, it won’t render,

but it will still respond to an ESC button press. The (abbreviated) code for this

button would look like the following.

new GuiButtonCtrl() {

//

position = “-1 -1”;

extent = “1 1”;

command = “Canvas.setContent (ggsMainMenuToon) ;”;

accelerator = “escape”;

}e

Notice that the button is 1 x 1 pixel positioned at <-1, -1>, thus putting it off

screen, The command this button executes sets the main menu as the contents

of the canvas.

Simply make this button a child of the credits interface, and it will work.

The Credits Interface Code

OK, at this point we have the GUI controls in place, but the GuiScrollCtrl

and the GuiMLTextCtrl will be using default profiles. So, the current credits

interface will look something like the image on the left in Figure 13.6, when

we would rather it look more like the image on the right. To fix this problem,

we'll need to write our own GuiControlProfile for the GuiScrollCtrl and for the

GuiMLTextCtrl.

Figure 13.6.

Chapter 13

Credits interface.

549

Part {ll

550

Game Elements

Custom Profiles

By default, the scroll profile uses either a Windows or OSX theme (based on

your platform). Both themes use a completely white and opaque background

and have a white border. Also, they both use a graphic for the scroll bars,

arrow buttons, and the scroll thumb. Our needs are a little different, though.

First, we want our background to be transparent (our image is dark enough

to act as a background to our ML text). Second, we don’t want to display any

graphics.

We could make a completely new profile to meet our needs, but to make our

lives easy, we’ll make a profile that derives from the default GuiScrollProfile.

if('isObject (gsToonCreditsScrollProfile))

new GuiControlProfile (gsToonCreditsScrollProfile :

GuiScrollProfile) {

border = 0;

opaque false;

bi

This profile disables the border and sets the control to translucent (not

opaque). The hidden benefit of inheriting from GuiControlProfile is that we

can use its graphics array (which is required by the control), but since we’re

not rendering it, we don’t really care what it is. That is, we don’t have to cre-

ate and specify a new bitmap array.

So, what about the GuiMLTextCtrl? We'll inherit again, but the only thing

we need to change is the opacity of the control.

if (!isObject (gsToonCreditsMLTextProfile))

new ‘GuiControlProfile (gsToonCreditsMLTextProfile) {

opaque = false;

b;

Great! Now we have the two profiles, but we need to decide where to

put them. We could put them at the top of the .gui file, but I prefer to put my

profiles in a separate .cs file. Then, I load the .gui file from the .cs file. This

way, I can have profiles and console methods in one place and have that be

separate from my interface definition. Please be sure that you load the .gui

file after the profile definitions, or else the control will fail to be defined (they

have to be defined to be used).

Filling the GuiMLTextCtrl

At this point, the only thing we have left to do is write some code to put text in

the GuiMLTextCtrl, and then to write that text. To fill the GuiMLTextCtrl, we’ll

Game Interfaces Chapter 13

need two pieces of code. First, we’ll need some code to read a file and dump

the contents to the control.

// 1. Clear all content.

// 2. Open the file gsMLTextContent.txt (abort if not found)

// 3. Read the file and push the contents into this GuiMLTextCtrl

function gsToonCreditsMLTextProfile::reload(%this) {

Sthis.setValue(“”); // Clear it

$file = new FileObject();

SfileName = expandFileName(“./gsMLTextContent.txt”);

echo(“Attempt to open ” , %$fileName);

$fileIsOpen = %file.openForRead(fileName);

echo(“Open for read ” , (%fileIsOpen ? “succeeded” : “failed”));

if(sfileIsOpen) {

while(!'%file.isEOF()) {

$currentLine = %file.readLine();

echo ($currentLine) ;

Sthis.addText(%*currentLine, true);

}

$this.forceReflow();

$file.close();

$file.delete();

This gsToonCreditsMLTextProfile::reload() console method does the

following.

e It is scoped to our (named) ML text GUI gsToonCreditsMLTextProfile.

e It opens the file “\gsMLTextContent.txt”.

e It reads the file line by line until the end of the file and then closes it.

« It dumps every read line to the GuiMLTextCtrl using the addText () con-

sole method.

e After reading the contents of the file, it forces a reflow on the GuiMLTextCtrl.

e Lastly, it closes the file and deletes the file object.

In order to use our new file-reading code, we need to have the onWake ()

method call it.

551

Part Ill

552

Game Elements

function gsToonCreditsMLTextProfile::onWake(%this) {

Sthis.reload();

Finally, we make a new file named “./gsMLTextContent.txt” and put the fol-

lowing text in it:

<just:center>

<color: FFFFFF><spush><just:center>

<font:Comic Sans:40><color:b10028><shadowcolor:001a69>

<shadow:1:1>My Big Game<spop>

<font:Palatino LinoType:36>Playground Productions

<tab: 300, 300>

<just:left>

<spush><font:Arial Bold:18> Written by:

Edward F. Maurina III

<color:b09100><shadowcolor:dddddd><shadow:1:1>

Hall Of Worlds, LLC

<spap>

<just:left>

<spush><font:Arial Bold:18> Brought to you by:

GG Press (tm)

<color:b09100><shadowcolor:cccccc><shadow:1:1>

Garage Games

<spop>

<font:Arial Bold:16>

<spush>

<lmargin%:1>I just want to thank...

<tab: 150, 300>

My Wife Teresa...

The Staff at Garage Games, and...and...sniff

You the customer...for making this possible... :)

<spush><just:center>(Escape for Main Menu) <spop>

<spop>

We've gotten to the end of our Toon series. Now, you should do it all again,

except use new graphics from the Tech series.

—- es a = —

Game Interfaces Chapter 13

13.3 Tech-Themed Interfaces

If you’re skipping ahead, please go back to the start of the Toon-themed series.

If not, please take a look at the images in Figure 13.7. Now that you’ve seen

the differences, please follow the steps outlined for the Toon series, but use

new art for a sort of Tech theme (or choose your own theme). Please note that

the Tech-themed menu adds a new button. You may add this if you wish, or

add only the original three, skipping the Options button.

Figure 13.7.

Tech-themed screens.

Splash Screen Main Menu Credits Screen
Please feel free to use the images provided with the GPGT Lesson Kit. If

you're copying my art, I expect that the second time through should only take

about an hour or less to achieve. If you’re making your own art, then most of

your time will likely be spent making the art. That is, once you’ve got a work-

ing set of interfaces, it is quite easy to re-theme them: add a few extra touches

here and there, and then you’re done!

Now that you’re feeling pretty good and you’ve become a bit of an expert

at making GUIs, let’s go make some HUDs.

13.4 Common HUDs

The last set of set of interfaces we will make in this book will be some common

HUDs. The most common set of HUDs you’ll find in video games are the following.

e Counters. Almost all video games use some kind of numeric feedback
_ to give score, ammo count, health status, etc (see Figure 13.8a). Thus,

we'll take the time to make a simple set of customizable counters that can

handle up to nine digits.

e Feedback bars. If a game doesn’t use numeric feedback, it will almost
surely use some kind of graph instead (see Figure 13.8b). Often both are

present. Thus, we’ll make a vertical bar to supplement the horizontal bar
that comes with TGE.

e Strip compass. OK, not all games have compasses, but I see requests for this
kind of thing a lot, and the compasses that folks have submitted as resources
are always popular. Problem is, all the compasses that folks have submitted
are C++-based, and new users may not want to mess with the code. Thus,

this strip compass is entirely TorqueScript based (see Figure 13.8c). 553

Part Ill Game Elements

Figure 13.8.

Some common HUDS.

«
gee
[itll
te |
ane
Ce

|
Le |
Le)
ane
Le |

a. Counters. b. Feedback bars. © c. Strip compass.

13.4.1 Counter HUDs

A counter HUD should be flexible enough that the digits can be placed in any

position, and also allow different styles of digits. We’ll make a simple set of

counters that use bitmap images for the digits. Additionally, we’ll write scripts

that handle up to nine digits (or actually a max count). This can be expanded

if you need, but nine is usually enough. These counters will come with and

without frames.

Counter HUD Images

Before we start, we’ll need to make some graphics files for our counters. You

can make your own graphics, or use the ones from the GPGT Lesson Kit.

¢ Digits. The GPGT Lesson Kit contains digital and comic-style digits in blue,
green, and yellow. Additionally, gray digits are provided as templates so

you can simply adjust the color and perhaps add other effects as you wish.

All digits are 50 x 50 pixels.

OG) tie | 3/4 5/6/1/8)/3
0/1/2\/3'4|5|6/7/8|9

e¢ Frames. Optionally, you can create frames for the digits. The GPGT Lesson

Kit includes several frame variations (corroded (not shown) and non-

corroded).

554

Game Interfaces Chapter 13

 LIT I

LT TTT); LELTITOgCI

Counter HUD GUI Controls

Depending on how you choose to implement your counter, you’ll have either

two or three sets of GUI controls involved. All counters will have a GuiControl

as a container for the digits, an optional GuiBitmapCtrl for the frame, and up

to nine GuiBitmapCtrl controls for the digits (I count this as one set).

In order to build your HUD, follow these steps.

1. Add and position a GuiControl as a child of the interface that should con-

tain this HUD.

2. Add the GuiBitmapCtrl controls that will be the digits as children of the
GuiControl we just added.

3. Optionally, add the frame GuiBitmapControl as a child of the GuiControl.

These HUD controls need to have certain names.

1. The GuiControl container can have any name, but it needs some name for

scoping our console methods.

2. The GuiBitmapCtrl digits need unique names of the form aDigitO, aDigit1,
etc. Notice that they all have the same prefix but different numeric values.

3. The (optional) GuiBitmapCtrl for the frame does not need to be named.

Now that we’ve named the controls, we need to add some dynamic fields to

the GuiControl container.

¢ numDigits. This should be between 1 and 9 (or greater if you modify the

scripts to handle more digits).

¢ digitTileName. This should be the same as the prefix we used when

naming the GuiBitmapCtrl controls used for the digits. In this example, the
value would be “aDigit”.

¢ digitPath. This field tells the scripts where to find the digit bitmap. This

path can be relative or nonrelative and should be of the form “\counters\

blueDigits\digi”. Notice that there is no ending slash.

OK, now we’re ready to write the scripts!

555

Part Ill

556

Game Elements

Count HUD Scripts

We need a minimum of three methods to use these counters: (1) a method

to initialize the counter, (2) a getCounterValue() method, and (3) a

setCounterValue() method.

initializeBitmaps ()

The first method we need is the initializeBitmaps() method. This

method is responsible for setting up the bitmaps.

function GuiControl::initializeBitmaps(%this) {

if(“” $= $this.digitPath) return false;

for($count = 0; %count < 10 ; %Scount++) {

$this.digitBitmap[%count] =

expandFilename(%this.digitPath @ %count);

}

This method basically expands the digitPath we supplied into a list of ten

images, one per possible digit (0..9).

setCounterValue ()

The main method we need is the setCounterValue() method. This method

is responsible for actually displaying a numeric value.

function GuiControl::setCounterValue(%this , %newCount) {

// Check to be sure that the required fields have been set:

//

// numDigits - Number of digits in this counter

// digitTileName - Prefix for tile names used in this

// counter (i.e. names of the controls)

// digitPath - Path to tiles used in this counter

//

if(“” $= %this.numDigits) return false;

if(“” $= %this.digitTileName) return false;

if(“” $= %this.digitPath) return false;

// Store the currentCount

Sthis.currentCount = %$newCount;

$newCountDigits = strlen({ @newCount);

if (%newCountDigits > %this.numDigits) { // Overflow

for($count = 0; %count < %this.numDigits ; Scount++) {

stmpDigit[%count] = 9;

Game Interfaces Chapter | 3

else {

// Pad with zeros so our ‘newCount’ string is exactly

// %this.numDigits wide

StmpNewCount = “”;

for(count = *this.numDigits - %newCountDigits ;

Scount > 0 ; %count--) {

StmpNewCount = %tmpNewCount @ “0”;

StmpNewCount = %StmpNewCount @ %NewCount;

// Get digits in reverse order and store them

for(count = 0 ; $count < Sthis.numDigits ; %countt++) {

StmpDigit[scount] = getSubStr (%tmpNewCount p

S6this.numDigits - 1 - %count , 1);

}

// Change the bitmaps for each digit in the display

for(Scount = 0 ; %S$count < Sthis.numDigits ; %count++) {

(Sthis.digitTileName @ %count) .setBitmap (

sthis.digitBitmap[%tmpDigit[%count]]);

}

return true;

This method does the following.

Checks that the required fields are present and ditches if they are not.

Stores the new count value as the current count.

Checks to see if the count that was passed is too large. If it is, all the digits

are set to nine, and the counter ditches. This is an overflow case.

If the basic checks are passed, the routine iterates over each count value

and extracts the digit. Then it uses the extracted digit to assign a bitmap
digit to the correct tile. By default, unset tiles are set to 0.

getCounterValue ()

Because it is good to create symmetric functionality for game objects, we’ll

create a getCounterValue() method, too.

function guiControl::getCounterValue(%this) {

}

return %$this.currentCount;

357

Part Ii!

Figure 13.9.

Vertical feedback

bar.

558

Game Elements

This function simply returns the currentCount value we stored in

setCounterValue().

As was previously mentioned, these scripts can be expanded to handle

as many digits as you like. Also, as an exercise, you might try adding non-

numeric handling code.

13.4.2 Vertical Feedback Bar HUDs

As mentioned above, an alternate to the digit counter is a feedback bar of

some type. TGE comes with a horizontal bar, but I often wish to use a verti-

cal (or other) style bar. TGE does come with a specialized vertical bar for

the player’s health/energy, but I prefer to use this scripted one. This HUD is

used to represent a value between 0.0 and 1.0 in steps of 0.1. In this sample,

the HUD is arranged as a vertical bar, but this code will handle having the

indicator tiles in any configuration. However, helper code has been provided

to make the design of a vertical bar easier. You’ll have to write your own

resize() method for other arrangements.

Vertical Feedback Bar HUD Images

The vertical feedback bar has one image: the frame for the HUD. Some sam-

ple frames are included in the GPGT Lesson Kit so you can use this right

away. The templates for these frames are provided so you can modify them.

The design of these vertical frames is important. If they are not designed

properly, you will not be able to (successfully) use the provided resize ()

method. This method makes tile placement a cirich. So, let’s discuss the

design of this frame.

The provided frames all have the same properties (see Figure 13.9).

e There are eleven cells, and the top cell is a graphic indicating the type of
indicator (damage or energy). You can put any graphic you like here by

editing the provided templates. The bottom cells are for separating our

feedback indicators.

e The top indicator cell starts at <0, 50>, and each cell after that is set at a
delta of <0, 45> pixels.

e The complete image is 50 pixels wide and 500 pixels tall.

Overall, the frames included in the GPGT Lesson Kit have a kind of known sym-

metry and regularity; i.e., the cells that represent the indicators are not oddly

shaped and do not exist at irregular spacings. We'll see why in a moment.

Vertical Feedback Bar HUD GUI Controls
As with the counters, the vertical feedback-HUDs are composed of three sets

of GUI controls. First, a GuiControl is used as the container for our HUD.

Game Interfaces

Second, a GuiBitmapCtr! is used as the frame for the HUD. Third, a set of

GuiControl controls are used as the indicators. To make this last set of controls

act as controls, we make custom profiles for them. We’ll address this in the

scripts section below. For now, let’s assemble our HUD.

In order to build your HUD, follow these steps.

1. Add and position a GuiControl as a child of the interface that should con-
tain this HUD.

2. Add the GuiControl controls that will be the indicators as children of the

GuiContro} we just added. Just make ten and place them at <0, 0> for

now.

3. Add the frame GuiBitmapControl as a child of the GuiControl container.

4, Resize the container and the frame to have the same dimensions and be

sure that the frame is above (in front of) the GuiControl indicators.

These HUD controls need to have certain names.

1. The GuiControl container can have any name, but it needs some name for

scoping our console methods.

2. The GuiControl indicators need unique names of the form DamageBar0o-
Indicator0, DamageBarOIndicator1, etc. Notice that they all have the same
prefix but different numeric values. The “Indicator” portion of the name is

required.

3. The GuiBitmapCtrl for the frame needs to have a name of the form Damage-
BarOIndicatorFrame. Notice that the prefix is the same as that for the
indicators.

Now that we’ve named the controls, we need to add a dynamic field to the

GuiControl container: feedbackBarPrefix. This should be a string contain-

ing the prefix you used for the indicators and frame. In this example, this field

would contain DamageBar0.

OK, now we’re ready to write the scripts!

Vertical Feedback Bar HUD Scripts

We have two kinds of scripting to do. First, we need to make some custom

profiles for our GuiControl controls. Second, we have to make scripts update

the bars. As an added bonus, we’ll do an (optional) final script that will make

positioning and creating these counters a cinch.

Custom Profiles

Our indicators are made from the GuiControl control. To make this work,

we need a custom profile that will make these controls opaque with a pre-

defined background color. Additionally, we may wish to make the container

Chapter 13

559

Part Hl

560

Game Elements

GuiControl opaque with a different background color. These profiles will look

like the following.

// A container profile

new GuiControlProfile (feedbackBarBackColorProfileOd) {

opaque = true;

fillColor = “20 20 20 255”;

yi

// An indicator profile

new GuiControlProfile (feedbackBarIndicatorColorProfileQ) {

opaque = true;

fillColor = “255 255 255 255”;

he

The first profile is a gray color and used for the container. The second profile

is a fully white color and used for the indicators. Please understand that, if

it pleases you to do so, each indicator tile can have its own profile, and each

can be a different color. Once you’ve created custom profiles, be sure they get

loaded before the .gui file and then use them as the profile for your controls.

Feedback Scripts

The guts of this HUD are the scripts that update the display. I’m providing two

methods, and as an exercise, you should modify them a bit and add a third.

The two provided methods are setFeedbackGUIValue(), which sets the

indicators based on a passed value, and flashIndicatorBar (), which is

used to cause the changed indicator cells to flash (optionally, of course).

function GuiControl::setFeedbackGUIValue(%this , %value) {

// Check for the required indicator prefix field

if(*” $= %this.feedbackBarPrefix) return;

// Generate an ‘index’ from %value

if (*” $= %value) %value = 0;

if ($value > 1.0)

$value = 1;

else if ($value < 0.0)

$value = 0;

else

$value = %value;

$this.curIndex = mFloor(10 * $value);

Game Interfaces Chapter | 3

for(%count = 1; %count <= 10; %count ++) {

$toggleCheck =

(sthis.feedbackBarPrefix @ “Indicator” @ %count) .isVisible();

(sthis.feedbackBarPrefix @ “Indicator” @ %count).setVisible {

Sthis.curIndex >= %count);

if(%toggleCheck !=

(sthis.feedbackBarPrefix @ “Indicator” @ %count).isVisible()) {

if(%this.flashTime > 0) {

(%this.feedbackBarPrefix @ “Indicator” @

%count) .flashIndicatorBar({ %this.flashTime);

%this.previIndex = %this.curIndex;

%this.currentValue = %value;

This method does the following.

e Checks that the required field is present, and ditches if it is not.

e Checks that the count is between 0.0 and 1.0 and, if not, adjusts it so that

it is.

e Because this method uses values between 0 and 10, it multiplies and fur-

ther massages the value so that it meets our requirements.

e The method loops over each tile and decides whether it should be visible
or not visible. If a tile is changed from visible to not visible, or vice versa,
the flashIndicatorBar() method is called.

e The method finishes by saving the current index and actual values.

So, what about this flashing? It is a pretty common thing to have indica-

tors flash when they change. So, as part of the fun, we’re going to add this

functionality.

function GuiControl::flashIndicatorBar(%$this , *flashTime) {

$flashPeriod = %flashTime / 3;

SisVisible = %$this.isVisible();

$this.schedule(%flashPeriod * 1, “setVisible”,

! S$isVisible);

$this.schedule($flashPeriod * 2, “setVisible”, %$isVisible);

This method does the following.

e Divides the flash time into three parts. 561

Part Ill

562

Game Elements

e Toggles the indicator visibility.

e Schedules the indicator visibility to toggle again in one flash period, and
then once more in two flash periods, for a total of three toggles.

Flashing is optional. I didn’t mention it earlier, but if you want the indica-

tor to flash when it changes, you’ll need to add one more dynamic field to the

frame: flashTime, This field should be the number of milliseconds you want

the indicator to flash.

Design Helper Method

At this point, we’ve written all the required code. However, when designing this

tutorial, I noticed that it was a real hassle to position the tiles. Thus, I’ve added

another piece of code. This code is used to resize the frame and pre-position the

indicator tiles. This version of the method only works for vertical bars.

function GuiControl::resizeVBAR(%this) {

// Check for the required indicator prefix field

if(*” $= %Sthis.feedbackBarPrefix) return;

if(“” $= %Sthis.originalframeDimensions) return;

if(*” $= %this.firstIndicatorY) return;

if(*” $= $this.IndicatorHeight) return;

// Resize and reposition the frame first

$ContainerWidth = getWord(%Sthis.getExtent() , 0);

SContainerHeight = getWord(%this.getExtent() , 1);

($this.feedbackBarPrefix @ “Frame”) .resize (

0, 0, %ContainerWidth , SContainerHeight);

// Resize and reposition the indicators

soriginalFrameWidth = getWord (

$this.originalframeDimensions , 0);

S$originalFrameHeight = getWord (

Sthis.originalframeDimensions , 1);

sresizdFirstIndicatorY = (

Sthis.firstIndicatorYy / %originalFrameHeight)

* $ContainerHeight;

S$indicatorHeightDelta = (

$this.IndicatorHeight / %originalFrameHeight)

* S$ContainerHeight;

$indicatorY = %resizdFirstIndicatoryY;

for (%Scount = 10; %Scount >= 1; %count --) {

(Sthis.feedbackBarPrefix @ “Indicator” @ %count).

resize(0, %indicatorY , *ContainerWidth ,

SindicatorHeightDelta);

Game Interfaces

SindicatorY = %indicatorY + %indicatorHeightDelta;

}

This method relies on the presence of some new dynamic fields:

* originalFrameDimensions. This two-element integer vector contains
the width and height of the original frame graphic. In the samples this is
“50 500”.

° firstIndicatoryY. This is an integer value that denotes top-to-bottom
y-offset of where the first indicator should be. In our sample, this is would

be at pixel “50”.

¢ IndicatorHeight. This is an integer value specifying the full-size height

of each indicator cell.

Knowing what these value are, the method does the following.

e Checks that the required fields are present, and ditches if they are not.

e Calculates the new size of the container.

e Grabs the original frame width and height.

e Calculates the new resized height for the first cell.

e Repositions and resizes the frame.

e Calculates the delta height for each indicator cell.

e Loops over the indicator cells and repositions and resizes each.

Why is this even necessary? Well, as I mentioned, when you move the

frame around and resize the elements, it becomes a real hassle to keep every-

thing properly aligned. This is compounded by the fact that, when we open

and close the editor to edit and test the GUI, the GUI controls are often resized

and repositioned.

13.4.3 Strip Compass HUD

Our last HUD is a compass displayed as a strip. I call this a strip compass,

but you can call it whatever you like. Basically, the challenge here is to make

a 2D representation of what is fundamentally a 3D object, and to do so in

script. This compass is designed to take a pointing vector and translate that to

a compass direction. It is assumed that +y is north and + x is east (as is the

case in the TGE world model).

Strip Compass HUD Images

The strip compass has two image files: (1) the. frame and (2) the strip

(Figure 13.10). As you can see, the frame is fairly simple. It has an outer strip,

Chapter 13

563

Part Il!

Figure 13.10.

A strip compass.

564

Game Elements

a center marker, and a screen. This screen is mostly translucent and the whole

thing is designed to overlay the strip.

SE N NE E SE § sw OW ONW N NE |

The strip may seem odd at first. It seems to be a lot larger than what it

needs to be. In fact, because we want to make it possible to display any point

on the compass by shifting our strip leftward, it needs to be wide enough and

contain enough elements to show all compass points along its leftward travel.

This means we need twelve points on the compass, versus the standard eight.

Four are repeated.

The provided strip is 1200 pixels wide and 50 pixels tall. The frame is 400

pixels wide and 50 pixels tall.

Strip Compass HUD GUI Controls

The strip compass has three GUI controls that are used to represent it: (1) a

GuiControl used as a container, (2) a GuiBitmapCtrl used as the strip, and (3)

a GuiBitmapCtrl used as the frame.

When we place our controls, they are placed as follows.

1. The container control is placed as a child of some GUI (i.e., whatever inter-

face contains the compass). The dimensions of this control are “400 50”.

This control should be named.

2. The strip is placed as a child of the container at “O 0”. The dimensions of

this control are “1200 S50”. This control must be named.

3. The frame is placed as a child of the container (covering the strip) at “0 0”.

The dimensions of this control are “400 50”.

For scripting purpose, the container contro] needs two dynamic fields.

* stripName. This field contains the name of our strip control.

¢ stripWidth. This field contains the pixel width of the original graphics
file used for the strip.

Please note that if you require the strip and frame to be of a different

dimension, you may resize them prior to saving your work, but—and this is a

big but—please be sure that you maintain the same ratio between the frame

width and the strip width. In addition, be sure that the stripWidth dynamic

field matches the width you’ve chosen for the control; i.e., if you choose to

shrink the control by half, the dimensions and fields would be as follows.

Game Interfaces _ Chapter |3

e Container = “200 25"

° Strip = "600 25"

e Frame = "200 25"

¢ container.StripWidth (dynamic field) = 600

Strip Compass HUD Scripts

If you don’t have a good grasp of 3D graphics mathematics, you should prob-

ably stop at this point and go bone up by reading the appendix in Akenine-

Moller and Haines’s Real-Time Rendering, Second Edition (A K Peters, Ltd.,

2002) or whatever book(s) you use as reference. Once you are properly girded,

carry on.

It is a well-known fact that we can convert a two-dimensional vector (i.e.,

in a plane) into a 360-degree angular value theta, where theta is the rotation

about a vector perpendicular to the plane and represents the rotation from

some arbitrary location. In other words, we’re going to use the dot-product

and some things we know about the TGE world to calculate an angle.

function GuiControl::updateCompass(%this , %*facingVector) {

// Check for the required fields stripName and stripWidth.

if (“” $= %$this.stripName) return;

if (“” S= éthis.stripWidth) return;

// Normalize the facing vector (just in case)

$facingVector = vectorNormalize(%facingVector);

// We can use the dot product and some tricks to figure out

// what part of how we should position our strip to properly

// indicate our facing direction.

$leftFacing = (vectorDot(“1 0 0” , %facingVector) < 0) ? true : false;

// remember 0 1 0 is forward, and that we can get the angle

// between X and Y in radians using the DOT product:

sforwardTheta = vectorDot(“O 1 0” , %facingVector);

// Now, knowing our facing and theta, we can calculate

// our right-hand rotation about Z in degrees:

if(tleftFacing) {

$rotationDegrees = 360 - (mACos(%forwardTheta) *

180.0 / 3.1415927);

}
else {

ErotationDegrees = mACos(%forwardTheta) *

180.0 / 3.1415927;

} : 565

Part Il]

566

Game Elements

// We've created a strip that is three times as wide as

// the frame, giving it 12 compass points vs. the normal 8.

//

// If we calculate our rotation as a percentage, account

// the ratio 8/12, and scale based on our current extent

// vs. the pre-scaled width of the image, we can

// calculate the exact position to place the strip at:

SCurPosY = getWord(%this.stripName.getPosition() , 1);

SCUrEXtX = getWord(%this.stripName.getExtent() , 0);

S6CUrEXtY = getWord(%@this.stripName.getExtent() , 1);

SpercentageRot SrotationDegrees / 360.0;

SextentRatio = %ScurExtX / $this.stripWidth;

// recall this is a left-shift

S$newPosxX = -1 * (8 / 12 * %percentageRot * %extentRatio

* S$this.stripWidth) ;

Sthis.stripName.resize(S$newPosxX, %curPosY, %ScurExtxX,

ScurExty);

This method does the following.

Checks that the required fields are present, and ditches if they are not.

Normalizes the facing vector to make it nicer to work with.

Checks to see if we are left- or right-facing. The dot-product only provides

the angle between two vectors, up to 180 degrees. Thus, we need to deter-
mine which half of the circle this is to get the whole picture.

Calculates the right-hand rotation about a vector "00 1", which is the TGE

world up vector.

Calculates the linear offset for the strip based on some known quantities,

including the current angle of rotation, strip width, and the ratio of the
normal points (8) to actual points (12) on the strip.

Repositions and resizes the strip.

13.5 Summary

In this chapter, we examined several GUI controls working in tandem to pro-

duce new and useful results.

We discussed the following standard interfaces.

e Splash screens. This is a basic screen, of which most games have at least
one and often several. They are used to display many different kinds of

Game Interfaces

information, including the game title, company logos, and even interlevel
art.

e¢ Main menus. This interface really needs no introduction, but we did learn

about how to implement it and then to hook other interfaces to it.

e Credits screens. This is another common interface, used to thank the folks

who worked hard on your game, to provide additional information, etc.

As part of the above effort, we produced two variations of each interface

(Toon and Tech themes) for a grand total of six interfaces.

Having completed the more serious discussion, we then Jaunched into a dis-

cussion of HUDs and learned how to make the following three useful HUDs.

¢ Counters. The counter HUD is seen in almost every game in some form or
another, making it worthwhile to explore one means of creating one.

* Vertical feedback bars. Another prevalent HUD is the feedback bar. Since

Torque already supports a horizontal bar, we worked together to create a

vertical version using only scripts and GUI controls.

¢ Strip compasses. Lastly, to show that C++ is nice but not necessary for

creating HUDs with complicated behaviors, we made a strip compass. This

HUD represents a 3D compass that rotates. We produced the same effect

in 2D using a little bit of math knowledge and the powerful and useful
TorqueScript language.

Chapter |3

567

Making the Game Part IV

Chapter 14

Putting It All Together

14.1 Maze Runner: A Simple Single-Player Game

Maze Runner is a simple platform game brought into the 3D realm. It isn’t

based on a specific game, but it is inspired by games I have played. My purpose

for this game was not to create a new blockbuster but rather to provide an

easy-to-understand game idea upon which we could hang examples as we

worked through the guide.

A 60-second summary of this game would read something like the following.

In this game, you run around a maze and pick up coins. Your goal is to pick up all the

coins while avoiding various obstacles. Mazes will vary in size and in scope. They may

run along one level, or have multiple levels. Along the way, as you hunt for all of the

coins, you will need to avoid disappearing bridges that may drop you to a lower level

or into a fiery cauldron below. You will be blocked by fireballs and impassable chasms.

To get around these obstacles, you will have to use your ingenuity and the occasional

teleport station. Timing, awareness of your surroundings, agility, and a little luck are

all required for winning. You will start with three lives and gain a new life for each

level you complete. To continue the game, pick up all of the coins and move on to the

next level. Get the highest score and win the admiration of your peers! Good luck.

14.2 Game Elements

Let’s stop for a moment and define the term game element. This is a term that

I am using to describe any and all of the pieces that are used to create a game.

For example, all of the following listed items are game elements:

e The game view. This general term incorporates point of view, field of view,
and other view-related concepts and describes the end view of our game.
We discuss this in Chapter 7, “Gameplay Classes.”

¢ Interfaces and HUDs. However much we might wish to ignore it, all
games require some GUJ work and will have a variety of interfaces (splash

screens, main menus, play GUIs, etc.) and some HUDs (counters, indicator

bars, etc.).

e Players and opponents. Although we could certainly have a game with

no directly identifiable players or opponents, 3D games generally do have

at least one model representing the player and other models opposing this

player in some fashion.

e¢ Weapons. This seems pretty straightforward, but what I really mean here is

weapons and weapon analogues. The analogue, in this case, is something

that functions like a weapon but may not necessarily do damage.

571

Part IV

572

Making the Game

The world. This is a rather large game element and is in fact composed of a
multitude of subelements, including terrain, water, the sky, environmental

objects (trees, rocks, grass, etc.), environmental effects (rain, wind, light-

ning, the sun(s) and planets, etc.), structures (buildings, fences, bridges,

etc.), sounds, and so on.

Power-ups and pickups. These are items that are often at the core of a

game and are meant to be interacted with. Sample items in this category
would be coins, gems, weapons, ammunition, health packs, etc.

Special effects. Here we are talking about eye and ear candy. These do
have a place in gameplay, but they are often not directly tied to interaction,
which is where we should focus our attention first.

Miscellaneous elements. This last category is a grab bag for elements that
don’t fit anywhere specifically. Some examples are inventory systems, co]-

lision detection and response, damage and energy, and general scripting

tasks.

Now, armed with an idea of what a game element is, let’s list the game ele-

ments in our game.

14.2.1 Maze Runner: Game Elements

The finished game has the following elements and attributes.

Interfaces. Splash screen GUI, main menu GUI, credits GUI, and play GUI.

Game view. The game can be played in 3rd POV only.

Player. The initial player will be the Blue Guy that comes with the FPS
Starter Kit. We will later design our own player. This player will be an
example of the simplest possible player that can be used in a game.

Opponents. There are no opponents in this game, but some suggestions will

be provided for adding them if you wish to expand on this game later.

The world. The game world is a simple cauldron-shaped pit. This pit will

contain a lake of lava. Our maze will consist of individual shapes that we

place using scripts and level-definition files. We will place some environ-
mental objects to spruce the place up. Additionally, there will be a sky

box, celestial bodies, clouds, wind, rain, and even lightning. We’re going

all out on special effects to show how to use as many Torque features as is

reasonable.

Obstacles. There are two types of active obstacles and three static obsta-

cles. The active obstacles include level blocks {individual and grouped)
that fade, disappear, and reappear over time. There are also blocks that
shoot fireballs in any of eight fixed compass directions (N, NE, E, SE, S,
SW, W, NW), or down, or any of the prior directions, but randomly. The

static obstacles are open horizontal spaces between blocks, vertical spaces

between blocks, and blocks themselves.

Putting It All Together

Getting around. To get around the maze, the player will run and jump.

Also, there can be up to three distinct teleport stations; that is, teleport sta-

tions can be grouped in sets, and there can be up to three distinct sets of
teleport stations in a level. Additionally, if any set contains more than two

stations, entering one station will randomly send the player to any one of

the other stations in the set.

Pickups and power-ups. The only pickup in the game is the coin. Picking

up all coins is the primary goal. A HUD will show the total coins picked up

and the number of coins remaining for the level.

Inventory system. We will use the “Simple Inventory” system that comes

with this guide and is described in Chapter 7, “Gameplay Classes.” It will

provide all the mechanics necessary to pick up coins and remove them

from the game world.

Miscellaneous “glue” scripts. We will end up writing quite a few scripts

to tie the game together, to track the score and our lives count, as well as
to load the levels.

14.3 Game Goals, Rules, and Mechanics

Great! Now we know generally what the game is about and what elements

it has. The last thing we need to do is describe how the individual game ele-

ments interact.

The goal of this game is very simple: score as high as possible by finishing

as many levels as possible before losing all of your lives.

The rules and mechanics for this game are as follows.

Pick up all the coins. Picking up all coins on a level ends the level and

takes the player to the next level.

Stay alive. Falling into the lava below or getting hit by a fireball kills the
player.

Gain lives. To gain more lives, simply complete a level. One new life is

gained for each level completed.

Teleporting. We can place up to three sets of teleport stations. Each set

may have two or more stations. If there are only two stations in a set, the

stations will teleport back and forth between each other. If a set has three

or more stations, the spawn point will be randomly selected. Teleporting

occurs by running over a station. The destination station will be temporar-

ily disabled to avoid infinite teleport loops. It will not operate again until

you walk off the station. Teleporting is not instantaneous, so be careful

about fireballs that cross stations, as you are temporarily unable to move

when teleporting.

Respawning. When the player is killed, it will respawn in the location

where it was first dropped into the game.

Chapter |4

573

Part IV

TTT TN
If you are a Linux user,

] must apologize. At

the time this book

went to print, version

1.4 of TGE for Linux

was still being worked

on. Please check the

GarageGames website

to see if it is ready and,

if so, download the

demo kit. Otherwise,

| suggest using one of the other versions

of the engine in the

interim. f
\ ae

574

Making the Game

e Level loading. To make this game easily maintainable, tunable, and modi-
fiable by players, all level loading is controlled by a text file (the level file).

Players can add new levels and redefine levels to their hearts’ content.

14.4 Setting Up Our Workspace

Before we can work on any lessons, we must first set up a work area. Every-

thing that you need to do this is supplied on the CD that comes with this

guide. If you examine the CD, you will find the following directories.

e “\Appendices”. This directory contains the GPGT appendices.

e “\Base”. This directory contains data and scripts that are used in the lessons

and can also be used later to make new games. Please see the “Lesson Kit
Assets” appendix for additional information about the contents of this direc-

tory.

e “\LessonKit”. This directory contains the GPGT lesson kit. For more infor-

mation about it, please read the “Lesson Kit User’s Guide” appendix.

e “\MazeRunner” Excluding the data and scripts in “\Base” and some con-

tent we will copy from the TGE demo that you should install using one of the

installers found in “\TorqueDemoInstallers”, this directory contains all of the

unique resources and scripts required to build the MazeRunner prototype.

e “\MazeRunnerAdvanced”. This directory contains a completed version of

MazeRunner with several additional features as suggested in Section 14.10,
“Improving The Game”.

“‘\TorqueDemolnstallers”. This directory contains installers for TGE.

At this time, if you do not have the demo installed on your machine, please

do so by running the appropriate installer (based on your computer and

operating system type). Once you have finished, please continue reading.

14.4.1 Starting from Torque Demo

First, be sure to install a copy of the TGE demo using one of the install-

ers found in “\TorqueDemolnstallers”. Feel free to install this anywhere you

please. While writing our game, we will be copying files out of the installed

demo to a working directory.

Second, let’s make a new (working) directory named “MazeRunner” and

place it on a drive with at least 100 MB of free space. We’ll want some elbow

room while we work. Please note, while we are writing our game (reading

the numbered lessons), this is the directory we will be working in. We will

be copying materials from the CD to this directory and editing them in some

places. Do not confuse this with the GPGT Lesson Kit which is also included

on the CD. The GPGT Lesson Kit is a separate application containing several

Putting It All Together

mini-tools and samplers. To learn more about this application you should read

Appendix B, “GPGT Lesson Kit Docs.”

Third, now that we have a place to work, let’s copy the entire contents of

the TGE demo directory (from wherever we installed it in step one} into our

new directory “MazeRunner”.

14.4.2 Write Cleanup Scripts

It is a good idea to have the ability to remove temporary files from a work-

ing directory. If we remove all compiled scripts (DSOs) before rerunning the

engine, we are insuring that only new script content will be used. Addition-

ally, it is a good idea to occasionally remove terrain lighting files (ML). To

accomplish these two tasks, we will write some scripts. |

The first script (if you are running Windows) will be a batch file called

“DELDSO.bat”. It is used to delete all compiled script files (DSO cleaning) and

contains the following simple line of script.

del /S /F *dso

In UNIX/Linux/OSX, the file would be “deldso”, and the content of the file is

the following.

rm ~rf *dso

The second file (if you are running Windows) will be called “DELML.bat”. It

is used to delete all terrain lighting files (ML cleaning) and contains the fol-

lowing simple line of script.

del /S /F *ml

In UNIX/Linux/OSX, the file would be “delm1”, and the content of the file is

the following.

rm -rf *m1l

We'll run the DSO cleaner each time we modify our scripts, and occasionally

we'll run the ML cleaner to get rid of stale lighting files.

14.4.3 Copy Mod Directory

Although it is possible to modify the demo to create MazeRunner, it will

be far simpler to start with a blank slate instead. To that end, a bare-bones

mod has been provided. To start with this mod, please copy “\MazeRunner\

A_SettingUp\prototype” from the accompanying disk into “\MazeRunner”.

Chapter 14

The demo kit

may include a set

of cleanup scripts.

Regardless, please read

this section so you

understand the reason

for creating them.

575

Part IV

576

Making the Game

14.4.4 Modify “main.cs”

Next, edit “main.cs” and change line 6 from this:

S$defaultGame = “demo”;

to this:

SdefaultGame = “prototype”;

This will use our new “prototype” mod instead of the demo mod.

14.4.5 Add Systems Scripts

The accompanying disk comes with a number of scripts that are provided

to simplify your game-writing endeavors. We discuss some of these scripts

in the guide, and those we do not discuss are documented in the “Scripted

Systems” appendix.

From the accompanying disk, please copy the “\Base\Scripts\EGSystems”

directory into “\MazeRunner\prototype”.

Then, edit the onStart () function in “\MazeRunner\prototype\main.cs”

so it looks like the following (bold lines are new code).

function onStart() {

// Maze Runner Changes Begin -->

exec (“. /EGSystems/SimpleInventory/egs SimpleInventory.cs”) ;

exec (“./EGSystems/SimpleTaskMgr/egs_SimpleTaskMgr.cs”) ;

exec (“./EGSystems/Utilities/egs ArrayObject.cs”) ;

exec (“./EGSystems/Utilities/egs_ Misc.cs”) ;

exec (“./EGSystems/Utilities/egs_Networking.cs”) ;

exec (“./EGSystems/Utilities/egs_SimSet.cs”) ;

exec (“./EGSystems/Utilities/egs String.cs”) ;

// <-- Maze Runner Changes End

//.. leave remaining code alone

14.4.6 Add Maze Runner Data

You are not expected to create your own content for this game. I have included

all of the models, textures, and sounds you will need.

From the accompanying disk, please copy the following directories.

1. “\Base\Data\GPGTBase” directory into “\MazeRunner\prototype\data”,

and

2. “\MazeRunner\A_SettingUp\MazeRunner” directory into “\MazeRunner\

prototype\data”.

Putting It All Together

14.4.7 Create Maze Runner Scripts Directory

Although we will not be placing anything in it yet, in preparation for our lessons,

let’s create the directory “\MazeRunner\prototype\server\scripts\MazeRunner”.

14.4.8 Test Run

After saving the modified “main.cs” and “prototype\main.cs”, run the execut-

able you placed in “MazeRunner”, and the prototype should start up. If it does

not, please retrace your steps and see if you missed something.

Windows Users

On Windows platforms, some users will get a warning about a missing or

wrong sound setup. If, and only if, you get this message, copy the “\Maze-

Runner\A_SettingUp\OpenAL32.dll” file (found on the accompanying disk)

into your “MazeRunner” directory and try again.

If that does not work, read through the “Getting Help” section in Chapter

1 of this guide.

14.4.8 Ready To Start

OK, if you got the executable to run, you’re ready to start.

14.5 90 Percent or 10 Percent?

If we ignore the iterative nature of game creation, we can roughly divide game

development into two parts: the first 90 percent and the last 10 percent.

I know, that probably sounds like a bunch of tripe, but bear with me for

a moment.

The first 90 percent should be all about planning and implementing. The

last 10 percent should be about polishing. If you are doing the polishing first

or spending too much time creating polished content, you are simply wasting

your time.

The above percentages do not have anything to do with the duration of

tasks but rather with the amount of effort that you should put into these two

parts when making your prototype.

You may have the goal of making games for fun or making them for profit

(hopefully for both). In the end, either goal will only be accomplished by

focusing on getting your game from the idea state to a playable state as fast as

you can.

Without a doubt, nice art, clean interfaces, and special effects are very

important to a game and to its ability to sell, but in order to have something

to sell, you must first have something to play. Some special effects and artistic

Chapter |4

577

Par lV

578

Making the Game

elements are critical to the playability of a game, but most are not (this does

not negate their value in the final version of a game).

To find out if a game is fun, you must be able to play it. Thus, the only goal

you should have is to get the game you are working on to a playable stage.

Often, when you play with your game prototype, you will find that an idea

that seemed great doesn’t really work or just isn’t really fun. Just as often, you

may be surprised to find that things you didn’t plan on doing turned out to be

really fun and/or cool]. In either case, you’ll never know until] you play your

game.

In this guide, we do lessons that can be considered either part of the 90

percent or part of the 10 percent. To help you, those lessons that are related

to game playability have been marked as “Maze Runner Lesson (90 Percent

Step),” and those that are important to the look and feel of the game have

been marked as “Maze Runner Lesson (10 Percent Step}.” You can safely skip

the latter lessons and the game will still be playable.

As a parting note, just remember this when you are tempted to work on

10 percent stuff first:

While a 90 percent is probably a B, 10 percent is definitely an F.

14.6 Returning to Chapter 2?

You may be reading this as a result of having been directed here from the end

of Chapter 1. If so, you should now return to Chapter 2, “Torque from 10,000

Feet,” and continue from there. Otherwise, feel free to continue here.

14.7 Finishing the Prototype

Thus far, you have probably been working your way through the guide, learn-

ing about various features of the Torque Game Engine. Along the way, we

have stopped to do little lessons that created one or more game elements to

be used in the game.

At this point, we don’t really have a playable game. We have just a short

distance to go before our game reaches the playable prototype stage. To get

our game ready for play testing we must do the following two things.

1. Finish gameplay code. At this point, we can start the Maze Runner mis-

sion and then manually load a level, but our player doesn’t get moved to

the right spot on the level, and there is pretty much no interaction. We
need to change this. Specifically, we need to make the levels load automati-
cally, have the player die when struck by a fireball or after falling into the

lava, load the next level when all the.coins are collected, and award our

player with a new life on a successful level completion.

Putting It All Together

2. Improve feedback. With the final mechanics in place, we need to provide
just a little more feedback to the player. Specifically, we need to update the

play GUI] to show how many lives we have, how many coins we've collected

(score), and how many coins are left for a level. Also, while we are about

this, we will add sounds for the fireball firing and explosions and then add
some GUI sounds and music to make if feel like a completed package.

14.8 Finish Gameplay Code

By this point, you should be feeling pretty comfortable with TorqueScript and

with navigating the prototype directory structure. So, the kid gloves are com-

ing off. In the next few pages, we will run through some terse discussions. We

wil examine newly added scripts and modifications to scripts we discussed

in prior lessons.

14.8.1 Copy Required Files

Before we continue, please do the following.

1. Copy “\MazeRunner\MazeRunner_Post_Finishing_the_Prototype\prototype2”

into “\MazeRunner\”.

2. Copy “\MazeRunner\MazeRunner_Post_Finishing_the_Prototype\main.cs”

into “\MazeRunner\”.

The new “main.cs” file points to the newly added “prototype2”. mod directory.

The directory “prototype2” contains all of the changes we are about to discuss

and is ready to play, if you would like to try it before continuing.

14.8.2 Breaking the Law

The first thing we will do is break the law. OK, we’re not breaking the law, but

we are doing something that I warned you not to do earlier. Namely, we are

going to make a global variable for tracking the ID of the player. Then, we are

going to use it to implement gameplay scripts and later to keep our interfaces

up to date.

We are, in effect, ignoring the client-server divide. This is both good and

bad. It is good because it makes writing the scripts for our single-player game

simple. It is bad because it ties us to a single-player game only. If later we

decide to make this game support multiple players, we will experience at least

some pain modifying our scripts to handle this new mode.

50, why are we doing this? Well, first, I know that in this book we will

only ever play this game in single-player mode. Second, the game is simple

enough that later, if you do convert this to multiplayer, the pain won’t be too

bad and it will serve as an excellent object lesson in making good decisions.

Chapter 14

579

Part iv

580

Making the Game

Excuses and reason aside, we must implement this change. To do so, [have

modified the method GameConnection::createPlayer() In “game.cs” to

look like the following {bold lines are new code):

function GameConnection::createPlayer(%this, %spawnPoint) {

// Create the player object

player = new Player() {

dataBlock = MazeRunner; // Change this line

client = Sthis;

;

MissionCleanup.add (player);

$Game::Player = tplayer; // MazeRunner

Now, whenever we want the player’s ID, we can just reference the global

S$Game::Player.

14.8.3 Automatic Startup

To this point, we have been manually loading missions by typing

buildLevel (0);. That is just fine for testing purposes, but we really need

ihe game to load when the mission is loading.

Experiments in Loading

If we examine the “game.cs” file closely, we will see that it has a variety of

functions and methods. Among these. are some promising-sounding places to

put a script for automatically loading our first level.

® onMissionLoaded(). Hmmm... this sounds good. The mission is loaded,
so we should be good to go.

® startGame(). This sounds good, too. | mean, we do want to start the
game, right?

¢ GameConnection: :createPlayer (). OK, maybe you wouldn't think of

this one. This is a hint, actually.

Great, we have some possible places to do the level loading, but what are the

steps we need to follow in order to load our Jevel?

Can we simply put a buildLevel {} callin one of these? Why don’t we

try it? Add the following code to the end of onMissionLoaded() (bold lines

are new code}.

startGame ();

buildtLevel (0} ;

}

After restarting the game and reloading the mission, this may work, or it may

work partially, or the game may hang. It depends.

Putting It All Together

At this point in the game startup process, there is some ambiguity in tim-

ing due to latencies that can vary from run to run. This means that any of the

following actions can occur.

1. The game starts correctly, and the player is on the correct spawn point.

This is what we want. Unfortunately, this doesn’t always happen.

2. The level loads and the player gets dropped on the safe spawn point—end

of story. Now we’re stuck.

. 3. If timing conspires against you, all the resources that need to have been

loaded won’t be ready, and the loading code will just hang. This is the
worst possibility.

So, what is happening here? Well, the mission was loaded, but the player had

not been created yet, so our scripts for moving the player can’t work. They

have no object to move. (If you’re curious, you can see the player-moving

script by looking at the playerDrop() function in “levelloader.cs”.)

Since putting buildLevel () after startGame() didn’t work, that pretty

much rules out our placing the function call in startGame(), too. What

about GameConnection: :createPlayer (), then? Let’s try that next.

Sthis.player = %player;

Sthis.setControlObject (%$player);

BuildLevel (0); //MazeRunner

}

Perfect! This is guaranteed to work properly every time. The level is always

loaded after the player is created, so the scripts have valid object IDs to work

with.

14.8.4 Dying

Another problem with our prior revision of this game was that we didn’t get

killed by the lava or fireballs. Let’s remedy that now.

KillZone

To be killed by the lava, we need some way to know we’re in it. Now, we

could make our water block into a lava block by changing the water type.

However, as part of our game design, we chose to make the player invincible,

so this won’t really help. | mean, we could in theory make our player have

a very low damage level, make it damageable, and then maybe, just maybe,

falling in the lava would kill him.

The thing is, we don’t really want the player object to be destroyed. We

just want to decrement a life and move to the spawn point. When a player

Chapter 14

581

Part IV

582

Making the Game

object is in the destroyed/dead state (getState() returns “dead”), the player

will no longer move or take move commands until it is replaced with a new

instance. This is by design and is not what we want in this instance.

So, long story short, we get creative. Let’s create a really big trig-

ger (named KillZone) and place it in the lava. Then, we can just write an

onEnterTrigger() callback that will take away a life and move us to the

spawn point. Perfect!

datablock TriggerData(KillZoneTrigger) {

tickPeriodMS = 100;

be

function KillZoneTrigger::onEnterTrigger(%DB , Trigger ,

%Obj) {

%Ob}.loseALife();

The above code defines the datablock for this trigger, and the callback calls

the method loseALife() (described below) on the object entering the trig-

ger. But what about placement? The following code will do the placement.

function buildKillZone() {

new Trigger(KillZone) {

position= “~-256 256 40%;

rotation= “1 0 0 0”;

scale = “512 512 257%;

dataBlock = “KillZoneTrigger”;

polyhedron = “0.0000000 0.0000000 0.0000000 1.0000000

0.0000000 0.0000000 0.0000000 -1.0000000

0.0000000 0.0000000 0.0000000 1.0000000”%;

he
MissionGroup.add(KillZone);

Then we can add a call to this code in onMissionLoaded() to do the cre-

ation (bold lines are new code):

function onMissionLoaded() {

buildKillZone(); // MazeRunner

startGame ();

So, what about that loseALife() thing?,

Putting It All Together

Player: :loseALife ()

The easiest way to handle removing lives is to make a method scoped to the

Player class (so it can be called on the Player object) that handles all of the

bookkeeping. This simplifies things greatly. Yes, right now only two things

can kill the player, but later you might add more, and having killing code all

over the place would be very bad.

Here is the code (located in “mazerunnerplayer.cs”).

function Player::loseALife(%player) {

// 1

splayer.lives--;

// 2

if(tplayer.lives <= 0) {

schedule(0 , O , endGame);

return;

// 3

splayer.setVelocity(“O0 0 0”);

splayer.setTransform(%player.spawnPointTransform) ;

}

This code does the following.

1. It decrements the player’s life counter. (Yes, we haven’t talked about this

yet. It’s coming up soon.)

2. It checks to see if all of our lives are gone and then schedules a call to
endGame () (in “game.cs”) to unload the mission, destroy the player, dis-

connect the client from the server, and get us back into the main menu.

Why not call endGame () directly?

You may wonder why we schedule a call to endGame () instead of calling it

directly.

The reason we do this is that, when we call endGame (), we indirectly cause the

player to be deleted.

However, the player is the object that the loseALife () method was called

on, so when the engine tries to return from the call to endGame (), it will not

have anywhere to return to. This will crash the engine.

The lesson here is to never delete the current object in a method that is called on

that object. Always defer that deletion by using a call to schedule ().

Calling schedule () with a time of 0 milliseconds tells the engine to run the

function as soon as possible after returning from all nested function calls. in

 practice, this will always be on the next processing cycle or later.

Chapter 14

583

Part IV

584

Making the Game

3. If the game is not over, the player is moved back to its last spawn point.

This information is stored in the player by playerDrop() in the file
“levelloader.cs”:

SGame::Player.spawnPointTransform = (%actX SPC %actY SPC

SCurrentElevation) ;

initial Lives

In order to take away lives, we must have lives to take. The best place to add

initial lives to the player is either in its onAdd() method or at the location

where we create it. I chose the onAdd() method (in “mazerunnerplayer.cs”;

bold lines are new code):

function MazeRunner::onAdd(%DB , %Obj) {

Parent::onAdd(%DB , %Obj);

%Obj.lives = 3;

Fireballs

OK, we got a little off topic there, but we’re back now. The next question is:

how do fireballs kill?

The projectile object has an onCollision() callback that is called for

collisions with any world object. So, if- we write a version of this callback in

the namespace of our projectile, we can have that callback check to see if the

player was hit and call loseALife().

function FireBallProjectile::onCollision(%projectileDB ,

SprojectileObj ,

ScollidedObj ,

fade , %*vec ,

speed) {

if (%collidedObj.getClassName() $= “Player”) {

$collidedObj.loseALife();

In the above callback (located in “fireballs.cs”), the engine is asked to get the

class name for the collided-with object. It then compares this to “Player”.

If the comparison returns true, loseALife() is called on the collided-with

object.

Putting It All Together

Alternate Solution #1

There is an alternate way to write this code that would actually work in more

cases (i.e., for Player and aiPlayer).

// Alternate implementation

function FireBallProjectile::onCollision(%projectileDB ,

SprojectileObj ,

$collidedObj.loseALife();

}

This alternate implementation uses the get Type () method to get a bitmask

for the collided-with object. The bitmask contains bit settings for all classes

from which the object is derived as well as for the class itself. So, as J alluded

to, if the collision occurred against an aiPlayer (which is derived from Player),

this comparison would still work, whereas the prior code would not. In this

game, we don’t have that worry, so let’s leave it as is.

Alternate Solution #2

Originally, as] wrote this code for the book, I was using a bleeding-edge

version of the engine (version 1.4 before release), and I ran into a bug (that

has since been fixed) where %collidedObj was always getting “1”. For a

moment, I thought I was stuck. Then, it occurred to me that there are other

ways to solve the identification problem, and | wrote the following code.

%0ffset = vectorSub(%vec , $Game::Player.getWorldBoxCenter());

SLen = vectorLen(%offset);

if(len < 1.7) {

SGame::Player.loseALife();

This code uses the position of the projectile’s collision and then compares it to

the position of the player’s centroid. If the distance between them is small (1.7

world units or less), in all likelihood the object that was hit is the player, and I

call loseALife(). This solved my temporary problem, and in the occasional

instance when the player wasn’t hit but was just close to the collision point,

the difference was not noticeable.

The lesson here is that TGE is very flexible, and you can often solve the

same problem in many ways. So, don’t let one problem stop you.

$collidedObj

fade , %vec , %speed)

if (%collidedObj.getType() $= $TypeMasks::PlayerObjectType)

Chapter 14

585

Part IV

586

Making the Game

Out of Lives

At some time, after all this losing of lives, the player will be out of lives.

According to our initial rules list, this means the game is up, time to go home.

As we have already seen (above) the loseALife() method handles this case

and ends the game for us.

14.8.5 Moving On
The last things we need to fix with regard to gameplay are moving on to the

next level and getting our extra life.

Last Coin

Our design rules stated that, when the last coin is picked up, the current level

should be unloaded and the next level should be loaded. So, how do we do

this?

If you recall, the inventory system has a callback called onPickup().

When we discussed this callback, I said that you might want to override it to

implement special behaviors. This is one of those times.

If you will look in “coins.cs”, you will find the following implementation

of onPickup().

function Coin::onPickup(%pickupDB , %pickupObj ,

SownerObj) {

// 1 .

status = Parent::onPickup(%pickupDB , %pickupObj ,

SownerOb));

// 2

if (CoinsGroup.getCount() == » {

buildLevel (SGame: :NextLevelMap) ;

$Game::Player.lives+t;

}

// 3
return %status;

}

This callback does the following.

1. It takes advantage of the prewritten pickup code by calling the Parent::

version.

2. It then checks to see if the SimGroup CoinsGroup is empty. In the case that
it is empty, buildLevel () is called with the stored numeric ID of the next

level, and a new life is added to our player.

Putting It All Together

3. Last, but not least, it returns the return status from the Parent call. This
is important because the method/callback that called onPickup() in the

first place might care if the pickup was successful or not.

14.8.6 Gameplay Scripting Completed

We are officially done with the gameplay scripting now. The game is now in

a playable state, and we could define some levels and ship it off to our testers

at this point. If this were a business venture, that would be the plan, but since

we're learning about Torque and not running a gaming business, let’s continue.

14.9 Improve Feedback

To make the game easier to play, we should provide some information to the

player about how many lives are remaining, what the score is, and how many

coins are left on a level. Also, adding sounds to the fireballs will make them a

little easier to detect. Lastly, if we add some sounds and music, we will have

a nicely rounded prototype.

14.9.1 Copy Required Files

Before we continue, please do the following.

1. Copy “\MazeRunner\MazeRunner_Post_Improve_Feedback\prototype3”

into “\MazeRunner\”. . |

2. Copy “\MazeRunner\MazeRunner_Post_Improve_Feedback\main.cs” into

“\MazeRunner\”.

The new “main.cs” file points to the newly added “prototype3” mod directory.

The directory “prototype3” contains all of the changes we are about to discuss

and is ready to play, if you would like to try it before continuing.

14.9.2 New playGUI HUDs

If you start the game and run the “Maze Runner” mission, you will see that

the new and improved playGUI has three HUDS at the top of the screen (Fig-

ure 14.1.) The three HUDs are the following.

e Lives counter (upper-left). Shows number of lives the player has left.

e Score (upper-middle). Shows number of coins thus far recovered.

e Remaining coins for level (upper-right). Shows coins left till end of level.

These HUDS should look quite familiar. They are the same counters we dis-

cussed in Chapter 13, “Game Interfaces,” being put to good use in our proto-

type game.

Chapter 14

587

Part IV

Figure 14.1

New HUDs.

588

Making the Game

To make your life easier, | have created a completely new playGUI con-

taining these HUDS and placed it and all the scripts and content associated

with it in “~ \client\ui\PlayGUIs\”. To get this new playGUI interface loaded

instead of the old one, I changed the initClient () function in “~ \client\

init.cs” as follows.

function initClient() {

// ou.

//exec(*./ui/PlayGui.gui”) ; // Prior to Maze Runner

exec (“. /ui/PlayGUIs/PlayGui.cs”); // MazeRunner (Load My GUI)

J//o.a.

//exec(“./scripts/playGui.cs”); // Prior to Maze Runner

// wu.

}

This change simply tells the function NOT to load the old “PlayGUI.gui” and

“PlayGUI.cs” and to load my “PlayGUIs/PlayGui.cs” intstead. This new script

will automatically load the remainder of the scripts required to build the new

playGUI. ,

Now, let’s talk about how these HUDs are hooked up.

Putting It All Together

Hooking up the Lives HUD

The lives counter is initialized in the MazeRunner: :onAdd() callback, from

the file “mazerunnerplayer.cs” (bold lines are new code):

function MazeRunner::onAdd(%DB , %0bj) {

Parent: :onAdd(%DB , %Obj);.

%O0bj-lives = 3;

livescounter.setCounterValue (%Obj.lives) ;

It is decremented in Player::loseALife(), from “mazerunnerplayer.cs”

(bold lines are new code).

function Player::loseALife(%player) {

// 1

splayer.lives--;

livescounter.setCounterValue (%player.lives) ;

//

It is incremented in Coin: :onPickup(), from “coins.cs” (bold lines are new

code).

function Coin::onPickup(%pickupDB , %pickupObj , %ownerObj) {

//

if (CoinsGroup.getCount() == 0) {

//

livescounter.setCounterValue ($Game: : Player.lives) ;

}

//

}

Hooking up the Score HUD

The score counter is initialized in GameConnection::createPlayer(),

from “~ \server\scripts\game.cs” (bold lines are new code).

function GameConnection::createPlayer(%this, %spawnPoint) {

//

BuildLevel (0);

scorecounter.setCounterValue (0) ;

Chapter |4

589

Part IV

590

Making the Game

It is incremented in Coin: :onPickup(), from “coins.cs” (bold lines are new

code).

function Coin::onPickup(%pickupDB , %pickupObj , %sownerObj) {

//

scorecounter.setCounterValue (

scorecounter.getCounterValue() + 1);

//

}

Hooking up the Remaining Coins HUD

The coins counter is initialized at the very end of BuildLevel(), from

“levelloader.cs” (bold lines are new code).

function BuildLevel(%levelNum) {

//

coincounter.setCounterValue(CoinsGroup.getCount());

}

It is decremented in Coin: :onPickup (), from “coins.cs” (bold lines are new

code):

function Coin::onPickup(%pickupDB , %pickupObj , %ownerObj) {

// . :

coincounter.setCounterValue(CoinsGroup.getCount());

//

}

14.9.3 Adding Sounds

To give the game a little more pizzazz and to make it feel more finished, we

need to add a few sounds. As you will recall, in Chapter 11, “Special Effects,”

we made several audio descriptions and audio profiles. I have included all of

these and a few others in two separate places.

The 2D sound descriptions and profiles have been added to a new file named

~ \client\scripts\MazeRunnerGUISounds.cs”. This includes the following.
“

¢ MazeRunnerNonLooping2DADObj. A non-looping 2D AudioDescription

object for use with AudioProfile objects.

¢ MazeRunnerLooping2DADObj. A looping 2D AudioDescription object for

use with AudioProfile objects.

ie MazeRunnerGGSplashScreen. An AudioProfile object to play music when

the GarageGames splash screen is displayed.

Putting It All Together Chapter |4

¢ MazeRunnerButtonOver and MazeRunnerButtonPress. Two AudioProfile

objects used to play button over and press sounds.

e MazeRunnerLevelLoop. An AudioProfile object used to play an ambient
loop during game play.

This file is loaded by “~ \client\init.cs” using the following code.

/// Load client-side Audio Profiles/Descriptions

exec(“./scripts/audioProfiles.cs”);

exec (“./scripts/MazeRunnerGUISounds.cs”); // Maze Runner

The 3D sound descriptions and profiles have been added to the existing

“fireballs.cs” file at the top and include the following.

e MazeRunnerNonLooping3DADDB. A nonlooping 3D AudioDescription

datablock for use with AudioProfile datablocks.

e MazeRunnerFireballExplosionSound. An AudioProfile datablock that is

played for each fireball when it is shot.

e MazeRunnerFireballExplosionSound. An AudioProfile datablock that is
used by the FireBallExplosion datablock to play an explosion sound.

These sounds will now be loaded when “fireballs.cs” is executed.

Now, let’s briefly discuss how each of our new sounds is used.

Adding Sound To Splash Screen

The simplest way to add a sound to the GarageGames splash screen is to

play the sound when the splash screen is displayed. If we look in the file

“wv \client\ui\StartupGui.gui”, we will find a method named loadStartup().

This method is used to display the splash screen. To have the game play a af

sound when the splash screen is displayed, I made these changes. i

alxPlay()

function loadStartup() { ae And Other

// a. Sound Functions

//alxPlay (AudioStartup) ; // Before Maze Runner We did not explicitly

alxPlay (MazeRunnerGGSplashScreen) ; // Maze Runner discuss the alx* ()

} functions in the

guide, but they are

Adding Sound to Buttons all documented in
the accompanying

To have the menu buttons play a sound when the mouse passes over a but- “Console Functions

ton and when a button is clicked, I needed to define a new GuiControlProfile Quick Reference” that

object and fill in the proper fields. | is part of Appendix A
on the accompanying

if (!isObject (MainMenuButtonProfile)) | disk. J

new GuiControlProfile (MainMenuButtonProfile) < { 591

Part IV

592

Making the Game

//

soundButtonOver “MazeRunnerButtonOver” ;

soundButtonDown = “MazeRunnerButtonPress” ;

};

I then made sure that each button in the main menu (“~ \client\ui\

mainMenuGui.gui”)‘used this new profile.

//
new GuiButtonctrl() {

profile = “MainMenuButtonProfile” ;

//

Adding Ambient Loop to Game

To add the ambient loop to our game, I simply added an alxPlay() state-

ment to the onWake () callback and a reciprocal alxStop() statement to the

onSleep() callback for the new playGUI. Both of these callbacks are located

in “ ~ \client\ui\playGUIs\playGUI.cs” and now look like this.

function PlayGui::onWake(%this) {

SenableDirectInput = “1”;

activateDirectInput ();

// Activate the game’s action map

moveMap.push ();

// Maze Runner

sthis.levelLoop = alxPlay (MazeRunnerLevelLoop) ;

function PlayGui::onSleep(%this) {

// Pop the keymap

moveMap. pop ();

if(isObject (%tthis.levelLoop))

alxStop(%this.levelLoop); // Maze Runner

Notice that I simply store the handle returned from alxPlay() into an

aptly named dynamic field level Loop created on the fly in the playGUI con-

trol object. Later, I check to see if the handle represents a valid handle and

stop playing the sound associated with it using alxStop().

Putting It All Together

Playing Sounds When Fireballs Are Fired

To play the firing sound, we will again use the playAudio() ShapeBase

method. Although we don’t care in this single-player game, by doing this, we

insure that every client will hear the sound with no extra effort on our part. To

do this, I modified the StaticShape: :shootFireBall() console method

to include the following code.

function StaticShape::shootFireBall({ %marker,

projectile ,

$pointingVector ,

svelocity) {

//

smarker.playAudio(0 , MazeRunnerFireballFiringSound) ;

}

If you recall, all fireballs are fired from the center position of a fireball block’s

world box. Thus, we can approximate the correct location for the firing sound

by simply playing the firing sound using the block that marks the origin of the

shot itself. In this case I merely called playAudio() and played the Maze-

RunnerFireballFiringSound AudioProfile datablock in sound slot 0.

Adding Explosion Sounds to An Explosion Datablock

The last sound that was added is the explosion sound. This was accomplished

by assigning the new MazeRunnerFireballExplosionSound AudioProfile

datablock to the existing FireBallExplosion datablock’s soundProfile

field,

datablock ExplosionData(FireBallExplosion) {

//

soundProfile = “MazeRunnerFireballExplosionSound”;

//

};

That’s it. We now have a working prototype that we can distribute for

testing. What’s next?

14.10 Improving the Game

At this point, the game is working and completely playable. However, it is a

long way from being a completed, or perhaps even fun, product. This short

section is about getting the game from sort-of-boring prototype to fun-to-play

finished product.

Chapter }4

593

Part IV Making the Game

Also, to show some of the things that can be done to improve this game,

an improved version of the game has been supplied on the accompanying disk

titled “MazeRunnerAdvanced”.

14.10.1 Add More Features

Before you jump info adding new features, I suggest that you play with your

final prototype and study the scripts that make it run. Make some sample lev-

els and play them. Then, once you feel confident enough, write down a list of

new features and start adding them.

To help your muse, here is a short list of suggested features.

° Rewrite the level loader.

e Get rid of the manual level-editing process and add a visual editor.

e Write a new level loader to load the files generated by the level editor.

e Add new gameplay elements.

e Gravity chutes.

e Flaming pipes.

e Falling blocks.

e Blocks that disappear (permanently) on contact.

e Opponents that block the path and kill the player on contact.

14.10.2 Use Missions Instead

As an exercise, consider changing the scripts to dynamically create a mission

file then load the mission file instead of generating the level on the fly.

14.10.3 Fix Safe Block

Currently, the player is sent to a “safe” block during level tear-down and

build-up. This is kind of weird and not all that pleasant to look at. Come up

with a better idea, like the following.

e Overlay the screen with a “loading” GUI while building.

e Fade the screen to black while building.

14.10.4 Cleanup

There are a tremendous number of scripts and assets going unused in the

game. Get rid of these to give the game a smaller disk footprint.

Putting It All Together

14.10.5 Maximize Networking Performance

As a single-player game, you might not think networking code would mat-

ter much, but it still does. By default, the networking settings are a bit low.

Because our connection is local, we can maximize these settings. This will

help decrease the time it takes to build our levels (since all dynamically gen-

erated objects are being ghosted on the fly from the local server to the local

client). So put the following settings in “game.cs” at the top.

e Spref::Net::PacketRateToServer = 32;

e Spref::Net::PacketSize = 450;

e Spref::Net::PacketRateToClient 32;

14.10.6 Experiment with Art and Special Effects

Improve the artwork, add more special effects, and tune the ones that are

there. Try using blocks that do not self-illuminate.

14.10.7 Features Added To Maze Runner

Advanced

Several new features were added and many old features were changed in

Maze Runner Advanced.

New Art

The first thing that was changed in Maze Runner Advanced was the art. I had

a professional artist replace my ugly programmer art with something that had

a lot more style (Figure 14.2).

ORR Oy

Chapter |4

Figure 14.2

New art.

595

Part IV Making the Game

Added More Splash Screens

Although this is technically new art, too, | want to point out that I needed to

allow this product to properly represent all the parties involved, so I added

a splash screen for Hall Of Worlds, LLC (my company), and a title screen for

the game (Figure 14.3).

Figure 14.3

New splash screens.

BALE OF INORLES

Visual Level Editor

Because | realized early on that the method for adding levels was difficult at

best and heinously frustrating at worst, I added a visual editor. This editor

uses modifications to the old programmer art and some tricky use of data-

blocks to supply a greatly simplified level editor (Figure 14.4).

Figure 14.4

Visual editor and resulting
level.

Credits and Help Dialog

I added a credits page and a help dialog containing instructions on using the

game, editor instructions, a description of the game, etc. (Figure 14.5.)

3996

Putting It All Together Chapter | 4

14.11 Summary

In this chapter, we quickly tied up the loose ends for our gameplay scripts by

enabling auto-loading of the mission, scripts to kill the player, more scripts to

reward the player with extra lives, and scripts moving us on to the next level

or ending the game based on coin and life counts, respectively.

We learned that there are multiple solutions for each problem we face,

and we examined a concrete example of a case where a bug (originally) pre-

vented me from writing the game the way I wanted to.

Lastly, we discussed the fact that this game is far from done, and then we

brainstormed some ideas for improving it and looked at what some of those

improvements entailed. . :

At this point, you should feel fairly confident that you can in fact make a

game, and that the Torque Game Engine will have the power and the features

to make that game a reality.

With that said, I wish you good luck and happy Torqueing!

Figure 14.5

Credits and help.

597

Index

A

ActionMaps 33, 356

actions 359

defining 357
devices 359

moveMap 222

unbinding 361

vehicle ActionMaps 235

add parent 89

alarmMode 197

animation 169

blended 20

cyclic 169

direction 170

non-blended 20

pausing 170
playing 169

animation sequences

activateBack 230, 231

activateBot 230

back 225

brakelight 230
Damage Animations 171
fall 225

jump 225

land 225

maintainBack 230, 231

maintainBot 230, 231

root 225

‘run 225

side 225

springO .. spring7 230
standjump 225
steering 230, 231

Vehicle 228

Atlas 268

Audio Emitters 296

Blue Guy 16, 17, 223

brushes

brush hardness 61, 62

. brush mode 59, 60

editing actions 60
selection and <Radius> 62

selection mode 59, 60, 62

bump mapping 265

Cc

callbacks 21, 355, 383

Canvas 456 :

classes

animating 329

animations 196

as control object 208

AudioDescription 448

AudioEnvironment 448

AudioProfile 448

AudioSampleEnvironment 448

bouncy 178

Camera 169, 201

CameraData 201

collisions 196

controlling 221
Debris 419

DebrisData 419

DecalData 426

ExplosionData 427

field of view (FOV) 205

FileObject 369

friction 179

GameBase 31, 143, 155

GameBaseData 143, 155

gravity 179
GuiControl 470

HoverVehicle 240

HoverVehicleData 240

InteriorInstance 17, 31, 197

Item 157,175

ItemData 175

movement 217

namespaces 353

networking 356

pitch 208
599

 600

Index

Player 213

PlayerData 213

POV Cookbook 210

Projectile 437

ProjectileData 438
restricting POV 208

rotating 177
SceneObject 31, 143, 151

ScriptGroup 31, 352

ScriptObject 31, 352
Selecting Node 208

ShapeBase 31, 158

ShapeBaseData 31, 158

ShapeBaselmageData 157, 189
SimDataBlock 143, 148

SimGroup 31, 350

SimObject 31, 143

SimSet 31, 347

static 177

StaticShape 157, 183

StaticShapeData 183

sticky 178

TSStatic 31, 187

Vehicle 231

VehicleData 231

WheeledVehicle 236

WheeledVehicleData 236

WheeledVehicleSpring 238
WheeledVehicleTire 237

yaw 209

client-server architecture. See network-

ing, client-server
cloaking 160

clouds 281

storm 284

collision detection (COLDET) 17, 19,

153, 220

collision meshes 18

collision timeout 180

onCollision() 21, 234, 249, 385

ShapeBaseImageData 196

TSStatic 187

concave 18

console callbacks

applyDamage() 163

click() 494, 508, 544, 545

doDismount() 235

eval() 413, 414

exec() 133, 181, 185, 223, 226, 256,

257, 315, 364, 372, 380, 576

onAction() 518

onClearSelected() 486

onCollision() 21, 135, 233, 234,

248, 249, 252, 385, 584, 585

onEnterTrigger() 339, 342, 386,

582

onInputEvent() 525

onInspect() 535

onLeaveTrigger() 339, 342, 343, 386

onMount() 234

onPickup() 2l

onRightMouseDown() 535

onSelectPath() 524

onSleep() 385, 459, 544

onTabComplete() 503

onTabSelected() 486

onTickTrigger() 339, 340

onTrigger() 340

onTriggerTick() 340

onURL() 497

onWake() 385, 459, 491, 544, 551, 552

console functions 114

activatePackage() 123, 124, 125

addMaterialMapping() 217

calcExplosionCoverage() 434

call() 414

cancel () 390, 518

commandToClient() 416, 417

commandToServer() 250, 251, 364,

415, 416, 418

compile() 379, 380

containerRayCast() 401

detag({) 107

echo() 100, 144, 145, 146, 154, 155,

156, 168, 177, 179, 184, 341, 348,

349, 350, 351, 353, 354, 355, 358,

365, 366, 369, 384, 388, 390, 393,

394, 395, 396, 397, 398, 399, 400,

404, 405, 406, 411, 412, 413, 414,

434, 473, 474, 475, 494, 495, 505,

506, 507, 520, 527, 532, 551

error() 405

eval() 413, 414

exec() 133, 181, 185, 223, 226, 256,

257, 315, 364, 372, 380, 576

expandFilename() 367, 369, 490

492, 551, 556

console functions (continued)

fileBase() 368

fileExt() 368

fileName () 367, 368, 369, 490, 492,

551, 556

filePath() 367

findFirstFile() 364, 365, 366

findNextFile() 364, 365, 366

firstWord() 392, 393

getBoxCenter() 404

getEventTimeLeft() 389

getFieldcount() 395

getFields() 135, 395

getFileCount() 366

getFileCRC() 366

getRandom() 405, 409

getRandomSeed() 405

getRealTime() 390, 391

getRecord() 394, 395

getRecordCount({) 394, 395

getRecords() 394

getScheduleDuration() 390

getSubStr() 396, 397, 557

getTimeSinceStart() 389

getWord() 153, 392, 472, 562, 566

getWordCount() 392, 393

getWords() 153, 243, 343, 392

isEventPending() 389

isFile() 368

isObject() 258, 344, 375, 409, 412,

413, 417, 528, 550

Itrim() 399

mAbs () 400, 402

mAcos() 402, 56S

mAsin() 402

mAtan() 402

‘MatrixCreate() 403

MatrixMulPoint() 400, 401, 403

MatrixMultiply() 403

mCeil() 400, 402

mCos() 402

mDegToRad() 402

mFloatLength() 405, 406

mFloor() 400, 402, 560

mLog() 402

mPow() 400, 402

mRadToDeg() 402

mSin() 402

mSolveCubic() 403, 404

index

mSolveQuadratic() 403, 404

mSqrt() 400, 402

mTan() 402

NextToken() 393, 394

quit() 90, 547

removeField() 395

removeRecord() 394, 395

‘"removeWord() 392, 393

restWords() 392, 393

rtrim() 399

schedule() 148, 161, 171, 377, 387,

388, 389, 390, 391, 392, 406, 407,

409, 491, 561

setDefaultFov() 203, 205, 206

setField() 395

setFov() 203, 205, 206

setRandomSeed() 405

setRecord() 394, 395

setWord() 392, 393

setZoomSpeed() 203, 206

strchr()} 396, 398

stremp{) 398

stricmp() 398

stripChars() 399

StripMLControlChars() 399

stripTrailingSpaces() 399

strlen() 396, 397, 556

strilwr() 396

strpos() 397

strreplace() 397, 398

strstr() 397

strupr() 396

trim() 399

VectorCross() 402

VectorDist() 402

VectorDot() 402, 565

VectorLen() 179, 243, 402, 585

VectorNormalize() 402, 447, 565

VectorOrthoBasis() 402

VectorScaie() 168, 402, 444, 447

VectorSub() 243, 341, 402, 528,

585

console methods 118, 120

activateLight() 197

add() 110, 135, 153, 163, 167, 177,

181, 182, 257, 258, 259, 334, 342,

347, 348, 350, 351, 355, 375, 383,

384, 402, 444, 447, 458, 494, 517,

543, 580, 582, 584, 589 601

602

Index

console methods (continued)

addColumn() 480

addMenu() 513

addPage() 486

addRow() 480, 504

addScheme() 516

addSelection() 533, 534, 535

addText () 498, 55]

applyDamage() 163

applyImpulse({) 168, 256

applyRepair() 163

attach() 496

bind{) 357, 360, 361, 364, 415, 418

bindcCmda() 250, 251, 358, 360, 361

bringToFront() 349

buildIconTable() 530

clear() 350, 505, 518, 532

clearMenultems({) 513

clearMenus() 513

clearSelection() 533

close() 369, 370, 371, 551

delete() 146, 147, 148, 258, 344,

348, 351, 369, 370, 371, 375, 384,

388, 389, 543, 55]

deleteLine() 496

deleteSelection() 534, 535

detach() 496, 497

dump () 139, 147, 148, 247, 496

echoTriggerableLights() 197

findItemByName() 532

findText() 517

findTextIndex() 506

forceOnAction() 518

forceReflow() 498, 551

get{) 543

getChild() 535

getClassName() 145, 148, 149, 584

getColumnCount() 480

getColumnOffset() 480

getControlObject() 205

getCount() 348, 349, 350, 351, 377,

406, 409, 417, 586, 589, 590

getCursorPos() 503

getDamageLevel() 164

getDataBlock() 145, 155, 163,

164, 168

getExtent() 562, 566

getEyePoint() 168

getEyeTransform() 168

getByeVector() 168

getForwardVector() 154

getGroup() 148, 343, 528

getId() 119, 144, 145, 148, 250,

25), 348, 349, 350, 413

getItemText() 532

getItemValue() 532

getLineText() 495

getMountNodeObject() 243

getMuzzlePoint() 437, 444

getMuzzleVector() 444

getName() 145, 148, 255, 355, 384,

388

getNextSibling() 535

getNumDetailLevels() 198

getObject() 348, 349, 417

getObjectBox() 154, 401

getParent({) 535

getPathIda() 336

getPosition() 334, 342, 434, 472,

566

getPoweredState() 184

getPrevSibling({) 535

getRowCount() 480

getRowld() 505

getRowNumByld() 505

getRowOffset() 480

getRowText() 505

getRowTextById() 505

getScale() 152, 314

getSelected() 517

getSelectedFile() 524

getSelectedId({) 505, 506

getSelectedPath() 524

getSlotTransform() 243

getState() 417, 582

getText() 508, 517

getTextBylId() 517

getTransform() 153, 207, 401

getType() 146, 148, 180, 585

getValue() 519, 520

getVelocity() 167, 444

getWorldBox() 154

getWorldBoxCenter() 154, 168,

243, 341, 447, 585

identity() 519

init() 425
insertLine() 495

' isActive() 474

console methods (continued)

isAwake() 474

isEOF() 369, 376, 551

isRotating() 177

isRowActive() 506

isStatic() 177

isVisible() 474, 561

listObjects() 350

makeFirstResponder() 461, 462,

473, 482

mountImage() 174, 175

mountObject() 173, 174

moveSelection() 533,535

open() 531

openForAppend() 37]

openForRead() 369, 551

openForWrite() 370

pauseThread() 170

performClick() 508

PhysicalZone() 128, 129, 334, 342

playAudio() 172

playThread() 169, 170, 171

pop() 250, 362

popBackLine() 496

popDialog() 457

popFrontLine() 496

push() 362

pushBackLine() 495

pushDialog() 457

pushFrontLine() 495

pushToBack() 349

readLine() 369, 551

reload() 551, 552

remove() 258, 344, 349, 355, 376,

383, 384, 459, 543

removeColumn({) 480

“removeMenu() 513

removeRow() 480, 504

removeRowByld() 505

replaceText() 517

resize() 472, 497, 558, 562, 566

rowCount () 480, 505

save() 148, 361

scroliToBottom() 482

scrollToTag() 498

scrollToTop() 482, 498

scrollVisible() 506

select () 516, 518, 535

setActionThread() 415, 417

Index

setActive() 474

setAlarmMode() 197

setBitmap() 490, 491, 509, 557

setCloaked() 160

setCollapsed() 485

setCollisionTimeout() 180

setColumnOffset() 480

“setContent() 93, 456, 545, 547,

549

setControloObject() 205, 207, 581

setCursor() 52l

setCursorPos()} 503

setDamageFlash() 165

setDamageState() 164, 166

setDataBlock() 155, 156

setDetailLevel() 198

setEnergyLevel() 167

setFlyMode() 203, 207

setHidden() 407

setInvincibleMode() 164

setMenultemBitmap() 514

setMenultemChecked() 515

setMenuItemEnable() 515

setMenultemText() 515

setMenultemVisible() 515

setMenuText() 515

setMenuVisible() 515

setName() 148

setOrbitMode() 203, 207

setPath() 524

setPoweredState() 184

setProfile() 471

setRechargeRate() 167

setRepairRate() 163

setRowActive() 506

setRowById() 504

setRowOffset() 480

setScale() 152, 188, 314

setSelectedByld() 506

setSelectedPath() 524

setSelectedRow() 506

setSkinName() 161, 185

setText() 497, 498, 501, 508, 517

setThreadDir() 170

setTransform() 153, 188, 343, 583

setValue() 490, 491, 519, 551

setVelocity() 167, 583 ©

setVisible() 474, 561

setWhiteout() 165 ~ 603

604

Index

console methods (continued)

size() 472, 497, 558, 562, 566

sort() 507, 518

startFade() 161, 407

stopAudio() 172

stopThread() 170, 171

stormClouds({) 284

stormFog() 283

stormFogShow() 283

toggle() 80

writeLine() 370, 371

console objects 115, 133

console methods 118

dynamic fields 119
fields 118

handles 118

names 118

control statements 112

branching 112
for 113

if-then-else 112

switch 112

switchs 1]3

while 113

conversion 396

convex 17, 18, 19, 158

CRC 175, 366

D

damage flashes 165
damaging 162, 163

Damage States 163

Invincibility 164
Visual Feedback 165

datablocks 29, 127, 133, 149

accessing fields 132
creating objects with 129
declaring 130

datatypes 106

arrays 109

Booleans 108

cleaning 399
comparisons 398

escape sequences 107

manipulating 392
metrics 396
numbers 106

searching and replacing 396

Strings 106
string operators 107
vectors 110

debugging
dump () 139, 147
tree() 139

DecalManager 426
Decals 425
destroying 162
dialogs

popping 457

pushing 457
DIF. See Interiors
disabling 162
DML 279, 280, 281, 284, 285
DTS. See shapes

Dynamix 3, 16, 18

E

Earthsiege 3

emitters

backwardJetEmitter 229

damageEmitter 230

damageEmitterOffset 230

dustEmitter 230

dustTrailfmitter 230

footPuffEmitter 215

forwardJetEmitter 229

numDmgEmitterAreas 230

particleEmitter 304, 305, 315,

316, 317, 341, 344, 430, 436, 440,

445, 446

splashEmitter 216

stateEmitter 192

stateEmitterNode 192

stateBmitterTime 192

tireEmitter 230

trailEmitter 229, 230

useEmitterColors 306

energy 166
environmental mapping 160
events 386

accuracy 390

cancelling 390
checking for 389
repeating 391
scheduling 387, 388
times 389

explosions 162, 166, 427

eyeOffset 190

eyeRotation 190

F

fields 395
field of view (FOV) 205

files

appending to 371

calculating CRC 366
counting 366

Dot (.) versus Slash (/) versus Tilde

(~) 367
expanding names 367
extracting name 367

extracting path 367
extracting prefix 368
extracting suffix 368
filename wildcards 366
locating 364
overwriting 370

reading 368, 369

writing 368, 370

file 1/O 364
firstPerson 190
fog 282

general 282
layers 282

forces and factors 217
forward vector 154
fxFoliageReplicator 318
fxLight 335
{xShapeReplicator 318

fxSunLight 326

G

games

3-D Language Spain 5

dRacer 5

Earthsiege 3

Golden Fairway 5

Lore 4

Marble Blast GOLD 4

Minions Of Mirth 6

Orbz 4

RocketBowl Plus 5

Starsiege 3

Think Tanks 4

Index

Tribes 1&2 3, 64, 99, 197, 268, 273,

401

getType() 146

Type Masks 145
globals

$Camera: :movementSpeed 203, 207

$ScameraFov 203, 204, 208

“SmovementSpeed 203, 207, 221

$SmvBackwardAction 221

$mvDownAction 221

$mvForwardAction 221

$mvFreeLook 209

SmvLeftAction 221

SmvPitch 222

$mvPitchDownSpeed 222

SmvPitchUpSpeed 222

$SmvRightAction 22]

SmvTriggerCount0-SmvTrigger-

Count5 232, 236, 241

$mvUpAction 22]

SmvYaw 222

SmvYawLeftSpeed 222

SmvYawRightSpeed 222

Spref::Decal::decalTimeout

426

Spref::Decal::maxNumDecals

426

Spref::decalson 426

Spref::Input: :KeyboardTurn-

Speed 222

Spref::Interior::detailAdjust

198
Spref::Net::PacketRateTo-

Client 595

Spref::Net::PacketRateTo-

Server 595

Spref::Net::PacketSize 595
Spref::Terrain: :enableEmboss-

Bumps 266

$thisControl 472

gravity 179, 180, 182, 183, 241, 304,

305, 316, 333, 422, 439, 445

GUI

accelerators 472

active 474

autosizing 469

awake 474
background color 465
bitmap arrays 463

605

Index

GUI (continued)

borders 464

commands 472

cursors 464

extent 471

first responder 473
fonts 465

key and mouse attributes 469
margins 481

nodifiers 527

#13—Celestial Bodies 332

#14—Teleport Stopper 334
#15—Teleport Triggers 340

#16—MoveMap 363

#17—Level Loader 371

#18—Game Events 406

#19—FireBal] Explosion 434

#20—The FireBall 444

#21—Game Sounds 450

About 11
level of detail (LOD) 19, 198

lightning 288
lights and lighting 191, 285

nouse events 525

Position 471

profiles 470

606

scrollbars 481
size 471 :

skinning 476, 482, 484, 487, 492,

509, 510, 512, 523
text formatting 468
Torque Markup Language (TorqueML)

499

variables 473
visibility 472, 474

I/O

file 364

images 189
image file lists (IFLs) 21

impulses 167

interiors 17. See also Classes: Interior-

Instance

level of detail (LOD) 198

inventories 243

L

Lessons

#1—Terrain for Our Game 72

#2—Loading Datablocks 132
#3—Game Coins 181
#4—Fade and Fireball Blocks 184

#5—Maze Blocks 188
#6—Simplest Player 223
#7—Preparing Our Game Inventory

256
#8—Lava in the Cauldron 278

#9—Starry Night 284
#10—Low Lighting 288
#11—Stormy Weather 294

#12—Teleport Station Effect 315

constantLight 176, 191
Interiors 197

lightColor 176, 191, 440

lightRadius 176, 191, 335, 440
lightTime 191
lightType 176, 182, 191

noLight 176, 182, 191
pulsingLight 176, 191

math 400

absolute value 402

addition 402

ceiling 402
centroids 404

conversion

degrees to radians 402
radians to degrees 402

cosine 402

creation 403

creation (from Euler angles) 403

cross Product 402

cubics 403

distance (between) 402

dot product 402

floor 402

inverse cosine 402

inverse tangent 402
length 402
logarithm 402
modifying mantissas 405
multiplication 403

normalization 402

orthographic basis 402
point multiplication 403

" power 402

math (continued)

quadratics 403

random numbers 404

scaling 402
sine 402

square root 402

subtraction 402

tangent 402

meshes

collision-O0-collision-8 185, 228

LOSCol-9-LOSCol-16 228

Mesh Nodes

cam 165, 204, 208, 210, 223, 224, 229

chassis 228, 236, 260

contrailO-contrail3 229, 230

eye 204, 208, 210, 223, 224, 229

hub0-hub7 229

JetNozzle0-JetNozzlexX 229, 230

mount0-mount31 172, 173, 174, 229,

242

Tire 228, 237, 238, 239, 240, 260, 261

mirrors 198, 199, 214

missions 22

mounting 172, 191

alternate positions (vehicles) 242

image-to-shape 174
mountPoint 191

nodes 172

offset 191

rotation 191

shape-to-shape 173
slots 172

vehicle 233

movement 217, 221

N

Namespaces 126, 133

building 149
chaining 149
inheritance 150

rules 149

scope 151

networking
client-server 24

communications 27

control object 28
division of labor 27

ghosts 28

scope 28

Index

Oo

objects 28

objects (console) 115

operators
string comparisons 111

P.

packages 122

particles 302

paths 336

performance
culling replicators 323

physical zones 333

portals 20

position 152

POV cookbook 210
precipitation 288

R

random numbers 404

records 394

render bans 280

repairing 162, 163

replicators 318

rotation 152

Ss

scale 152

scales

over vertex brush scale 58

selected brush scale 58

ShapeBaselmageData

animations 195, 196

running scripts 195

shapes 16, 157

skinning 487
skins (shape) 161

multi-skinning naming convention
161

sky

visibility 282

sky box 279, 280

sound 172

2D 22, 297
3D 22, 299
AudioDescription 448

AudioProfile 448

Audio Emitters 296

special effects 31
607

608

Index

squareSize 267, 268, 270, 271

Starsiege 3

state machines 192

defining 193
doing work 194
running animations 195

running scripts 195
transitioning 193

strings
cleaning 399
comparisons 398

manipulating 392
metrics 396

searching and replacing 396

Sun 285

T

Terrain 263

ticks 24

tokens 393

TorqueScript

built-in functions 103

transforms 153, 168

getEyeTransform() 168

getEyeVector() 168

getForwardvector() 154

getPosition() 334, 342, 434, 472, |

566

getScale() 152, 314

getTransform() 153, 207, 401

object boxes 151, 154, 401

setScale() 152, 188, 314

setTransform() 153, 188, 343, 583

world boxes 154

Tribes 1&2 3,99, 197, 268, 273, 401

triggers 338

group 340

type masks 145

U

Unicode 467, 468

Vv

vehicles 227

animations 228

velocity 167, 178

getVelocity() 167, 444

maxVelocity() 178, 179, 221, 290

setVelocity() 167, 583

visibility 282

Ww

water 269

flowing 274

reflections 276

shoreline 275

types 273

waves. 272

words 392

Z

zooming 205

Ee Se ¥ i ' . mean
oa yee « ‘ ae a se ‘

ere, ws) ve ; * ee ae
wee, ¥ #

nas % é ii
‘ ‘ ;

» # “ * Naty ae
?

“4 wi ne ’

* 4 F

Edward F. Maurina Ill
Get under the hood of the Torque Game Engine and learn how to design your own game!

The Game Programmer’s Guide to Torque walks aspiring game makers and industry veterans

alike through the well-known and professionally proven Torque game-development technology.

With clear explanations and detailed discussions of the engine’s inner workings, this book is a

must-read for any programmer interested in making games—for fun or profit.

Features:

* Step-by-step examples demonstrate how to use the engine to its full potential.

* Detailed system descriptions clearly explain how Torque and other game engines work.

* Full Torque Game Engine demo included on the CD offers all you need to get started making

games on your own.

* In-depth references provide quick look-ups for engine classes, subsystems, and script functions.

¢ Lesson kit included on CD allows you to learn at your own pace.

* Over 500 additional pages of appendices on CD provide fast, searchable references and

information on game development and Torque.

“I'll definitely recommend this text to my classes in the Computer Game Software Development degree

as required reading when paired with their study of the Torque Game Engine. We all know that the key to

getting a good job in the industry is having a great portfolio, and this will definitely help!”

—Phil Carlisle; Course Leader & Senior Lecturer, University of Bolton

“Torque is a deep and powerful piece of software—Maurina’s book is the best guide available for the

engine. | am sure it will become standard reading for programmers at our shop.”

—Josh Welber; Partner and Technical Director, Large Animal Games

Edward F. Maurina II! is a long-time Torque programmer and trainer. He is co-owner and lead designer

at Hall Of Worlds, LLC., an independent game studio and developer of educational products. He began

programming in 1981 and has since programmed variously as an intelligence-applications programmer

(United States Air Force), as an independent educational contractor, and as a senior engineer

(Intel Corp.). Ed continues to write about Torque and work on Torque-based games and products.

ll

ISBN 1-56461-284-1

+ QD oor 9"781568"812847

	FrontCover
	Table Of Contents
	Part I-Introduction
	Ch1. Introduction
	1.1 About the Torque Game Engine
	1.1.1 What is Torque?
	1.1.2 Why Should I Use Torque?
	1.1.3 Not Just First-Person Shooters

	1.2 What This Guide Contains
	1.2.1 Summary

	1.3 What This Guide Does Not Contain
	1.4 What You Should Know Before Reading This Guide
	1.5 How To Obtain Torque(Licensing Torque)
	1.6 Getting Started, One Step At A Time...
	1.7 The GarageGames Community and Resources
	1.8 Conventions
	1.8.1 Icons Legend: Warnings, Notes, and Expert Tips
	1.8.2 Game-Building Lessons

	Part II-Engine Overview
	Ch2. Torque from 10,000ft
	2.1 TGE Terms and Concepts
	2.1.1 Shapes and DTSs(TGE Term)
	2.1.2 Interiors and DIFs(TGE Term)
	2.1.3 Convex Vs. Concave(Industry Terms)
	2.1.4 Convex Brush(Industry Term)
	2.1.5 Level Of Detail(Industry Term)
	2.1.6 Collision Detection, or COLDET(Industry Term)
	2.1.7 Portals(Industry Term)
	2.1.8 Animatios: Blended Vs. Non-Blended(Industry Term)
	2.1.9 Image Lists, or IFLs(Industry Term)
	2.1.10 Callbacks(Industry Term)
	2.1.11 2D and 3D Sound(Industry Term)
	2.1.12 Missions(TGE Term)
	2.1.13 Event-Driven Simulator(Industry Term)
	2.1.14 Ticks(TGE Term)
	2.1.15 Client-Server Architecture(Industry Term)
	2.1.16 Objects(Industry Term)
	2.1.17 Ghosts, Control Objects, and Scoping(TGE Terms)
	2.1.18 Datablock(TGE Term)

	2.2 Finding Your Assets
	2.2.1 Finding Assets-TGE FPS Starter Kit
	2.2.2 Finding Assests-Included Lesson Kit

	2.3 Sim Hierarchy Overview
	2.4 TGE I/O Fundamentals
	2.4.1 TGE Device Input Architecture
	2.4.2 TGE File I/O

	2.5 Move Along...Nothing To See Here...Move Along...

	Ch3. Torque Tools
	3.1 What We Are About To Learn
	3.2 Torque's Basic Editors
	3.3 The World Editor Tools
	3.3.1 World Editor Basics
	3.3.2 World Editor Devices
	3.3.3 Cursors
	3.3.4 The Gizmo and Gizmo Scales
	3.3.5 Menus and Windows
	3.3.6 Selection Boxes
	3.3.7 The Handle and Level Grid
	3.3.8 Scaled Devices

	3.4 World Editor Mechanics
	3.4.1 Default Movement and Viewpoint
	3.4.2 Object Selection and Translation
	3.4.3 Using the Gizmo
	3.4.4 Scaling Using Bounding-Box Planes

	3.5 World Editor(Manipulator)
	3.5.1 Starting The Manipulator
	3.5.2 The 3D World View Window
	3.5.3 World Editor Menus

	3.6 World Editor Inspector(Inspector)
	3.6.1 Starting The Inspector
	3.6.2 Examining The Inspector
	3.6.3 World Editor Tree
	3.6.4 SimGroups
	3.6.5 World Editor Key Stroke/Mousing List
	3.6.6 World Editor Inspector Window

	3.7 World Editor Creator(Creator)
	3.7.1 Starting World Edtior Creator
	3.7.2 World Editor Creator Window

	3.8 Mission Area Editor(Area Editor)
	3.8.1 Starting The Mission Area Editor
	3.8.2 The Mission Area Editor Window

	3.9 Terrain Editor
	3.9.1 Starting The Terrain Editor
	3.9.2 The Terrain Editor Window
	3.9.3 Editing

	3.10 Terrain Terraform Editor(Terraformer)
	3.10.1 Starting The Terraformer
	3.10.2 The Terraformer(An Overview)
	3.10.3 The Terraformer Preview Window
	3.10.4 Terraformer Operations Tree
	3.10.5 Maze Runner Lesson #1

	3.11 Terrain Texture editor
	3.11.1 Starting The Terrain Texture Editor
	3.11.2 The Terrain Texture Editor Preview Window
	3.11.3 The Texture Editor Textures List(Loading Textures)
	3.11.4 Terrain Texture Editor Operations

	3.12 Terrain Texture Painter(Terrain Painter)
	3.12.1 Starting The Terrain Texture Painter
	3.12.2 Examining The Terrain Painter

	3.13 World Editor Quick Tips
	3.13.1 Manipulator (F11+F2) Tips
	3.13.2 Inspector (F11+F3) Tips
	3.13.3 Creator (F11+F4) Tips
	3.13.4 Area Editor (F11+F5) Tips
	3.13.5 Terraformer (F11+F7) Tips
	3.13.6 Terrain Painter(Windows->Texture Painter) Tips
	3.13.7 General Editing Tips

	3.14 The GUI Editor
	3.14.1 Starting The GUI Editor
	3.14.2 Examining The GUI Editor
	3.14.3 Things To Beware!
	3.14.4 GUI Editor Basics
	3.14.5 Control Manipulation
	3.14.6 Adding Controls To An Existing GUI
	3.14.7 Creating A New (Parent) GUI
	3.14.8 Loading New GUIs
	3.14.9 Summary

	Ch4. Introduction to TorqueScript
	4.1 TorqueScript Concepts And Terminology
	4.1.1 To Script Or Not To Script?
	4.1.2 Features We Need

	4.2 What About TorqueScript
	4.2.1 The Console And Sample Scripts
	4.2.2 The Sample Script Console

	4.3 TorqueScript Features
	4.3.1 Variables
	4.3.2 Data Types
	4.3.3 Operators
	4.3.4 Control Statements
	4.3.5 Functions
	4.3.6 Objects
	4.3.7 Console Methods
	4.3.8 Packages
	4.3.9 Namespaces
	4.3.10 Datablocks

	4.4 Datablocks, Objects, And Namespaces Revisited
	4.4.1 Object Namespace Hierarchies
	4.4.2 Simple Datablock Namespaces
	4.4.3 Inserting Datablock Namespaces (ClassName)
	4.4.4 Namespace Inheritance?
	4.4.5 A Parting Reminder (Datablock Versus Object Namespaces)
	4.4.6 Helping Yourself

	4.5 Summary

	Part III- Game Elements
	Ch5. Torque Core Classes
	5.1 SimObject
	5.1.1 SimObject Features
	5.1.2 SimObject Description
	5.1.3 Name and ID, Please...
	5.1.4 Class Name And Type Information
	5.1.5 Saving and Deleting
	5.1.6 Dumping Information
	5.1.7 Group Membership
	5.1.8 SimObject Methods

	5.2 SimDataBlock
	5.2.1 SimDataBlock Features
	5.2.2 Datablock-Object Pairing
	5.2.3 Namespace Rules

	5.3 SceneObject
	5.3.1 SceneObject Features
	5.3.2 SceneObject Description
	5.3.3 Position, Rotation, And Scale
	5.3.4 The Transform
	5.3.5 Collision Detection
	5.3.6 Object Boxes And World Boxes
	5.3.7 The Forward Vector

	5.4 GameBase And GameBaseData
	5.4.1 GameBase Features
	5.4.2 The Foundation Game Classes

	5.5 Summary Of Core Classes

	Ch6. Basic Game Classes
	6.1 Shape and Interiors
	6.1.1 Shapes
	6.1.2 Interiors

	6.2 ShapeBase/ShapeBaseData
	6.2.1 ShapeBase And ShapeBaseData Features
	6.2.2 Rendering
	6.2.3 Damaging, Disabling, Destroying, And Exploding!
	6.2.4 Energy
	6.2.5 Physical Parameters
	6.2.6 Eye Transforms And Vectors
	6.2.7 Camera Settings
	6.2.8 Animation
	6.2.9 Sound
	6.2.10 Mounting
	6.2.11 Miscellaneous- CRC And aiAvoidthis

	6.3 Item And ItemData
	6.3.1 Item And ItemData Features
	6.3.2 Item Rendering
	6.3.3 Item Physics
	6.3.4 Item Collisions
	6.3.5 Items And dynamicType
	6.3.6 Maze Runner Lesson #3

	6.4 StaticShape And StaticShapeData
	6.4.1 StaticShape And StaticShapeData Features
	6.4.2 Powered State
	6.4.3 dynamicType
	6.4.4 Maze Runner Lesson #4

	6.5 TSStatic
	6.5.1 TSStatic Features
	6.5.2 Rendering
	6.5.3 Collision
	6.5.4 Creating TSStatic Shapes
	6.5.5 Moving And Scaling
	6.5.6 Maze Runner Lesson #5

	6.6 ShapeBaseImagedata (Images)
	6.6.1 ShapeBaseImageData Features
	6.6.2 Rendering Options
	6.6.3 Mounting
	6.6.4 Weapon-Related Features
	6.6.5 State Machines
	6.6.6 InteriorInstance

	6.7 Summary

	Ch7. Gameplay Classes
	7.1 Gameplay?
	7.2 Camera And CameraData
	7.2.1 Camera And CameraData Features
	7.2.2 Parts Of The Whole
	7.2.3 Basic Game Views Cookbook

	7.3 Player And PlayerData
	7.3.1 Player Rendering (POV)
	7.3.2 Player Special Effects
	7.3.3 Player Physics

	7.4 Controlling The Player
	7.4.1 Movement Globals
	7.4.2 The MoveMap
	7.4.3 Maze Runner Lesson #6

	7.5 Vehicles
	7.5.1 Vehicles Overview
	7.5.2 Vehicle And VehicleData
	7.5.3 Vehicle Mounting
	7.5.4 Wheeled Vehicles
	7.5.5 Hover Vehicles
	7.5.6 Alternate Mounting Positions

	7.6 Inventories
	7.7 The Simple Inventory System (SimpleInventory)
	7.7.1 Designing SimpleInventory
	7.7.2 Using SimpleInventory
	7.7.3 General Inventory Tips And Gotchas
	7.7.4 Inventory Validation
	7.7.5 Maze Runner Lesson #7

	7.8 Gameplay Classes Summary

	Ch8. Mission Objects
	8.1 Mission Objects
	8.2 Terrain
	8.2.1 Terrain Features
	8.2.2 The Detail Texture
	8.2.3 Bump Mapping
	8.2.4 More About Terrain Painting
	8.2.5 Alternate Terrain Sizing
	8.2.6 Big Terrains: Don't Do it!
	8.2.7 No Terrain?

	8.3 Water (Blocks)
	8.3.1 Basic Water (Quick Setup)
	8.3.2 Water Features
	8.3.3 Advanced Water
	8.3.4 Maze Runner Lesson #8

	8.4 Sky
	8.4.1 Sky Features
	8.4.2 The DML File
	8.4.3 The Sky Box And Render Bans
	8.4.4 Clouds
	8.4.5 Fog
	8.4.6 Visibility
	8.4.7 Rendering Issues
	8.4.8 Sky Scripting
	8.4.9 Maze Runner Lesson #9

	8.5 Sun (Mission Lighting)
	8.5.1 Sun Features
	8.5.2 Shadows And Sun Direction
	8.5.3 Color And Ambient Parameters
	8.5.4 Multiple Suns?
	8.5.5 No Sun?
	8.5.6 Maze Runner Lesson #10

	8.6 Precipitation And Lighting
	8.6.1 Precipitation Features
	8.6.2 Lightning Features
	8.6.3 Let There Be Rain
	8.6.4 It Was A Dark And Stormy Night...
	8.6.5 Lightning Strikes
	8.6.6 Maze Runner Lesson #11

	8.7 Audio Emitters
	8.7.1 Audio Emitters Features
	8.7.2 2D Sound
	8.7.3 3D Sound
	8.7.4 3D Emitter Examples

	8.8 Particle Emitter Nodes
	8.8.1 What Is A Particle Emitter Node?
	8.8.2 Particle Emitter Data Blocks
	8.8.3 ParticleEmitterNodeData(PEND) Datablock Parameters
	8.8.4 ParticleEmitterData(PED) Datablock Parameters
	8.8.5 Particledata(PD) Datablock Parameters
	8.8.6 PEN Parameters
	8.8.7 PEN Equations
	8.8.8 Particle Interpolations
	8.8.9 PEN Lifetimes
	8.8.10 PEN Particle Ejection Frequency
	8.8.11 Theta And Phi Explained
	8.8.12 Orientation Explained
	8.8.13 Animated Textures
	8.8.14 Multiple Particles?
	8.8.15 Holy Popping Particles!
	8.8.16 Can I Mount Emitters?
	8.8.17 Can I Move Emitters?
	8.8.18 Maze Runner Lesson #12

	8.9 fxShapeReplicator & fxFoliageReplicator
	8.9.1 Replicator Features
	8.9.2 Placing Replicators
	8.9.3 Replicator Visual Feedback
	8.9.4 Seeds
	8.9.5 Replicant Count
	8.9.6 Placements Restrictions (Restraints)
	8.9.7 Retries
	8.9.8 Foliage Dimensions
	8.9.9 Shape Dimensions And Rotation
	8.9.10 Foliage Culling
	8.9.11 Foliage Animation
	8.9.12 Foliage Lighting

	8.10 fxSunLight
	8.10.1 fxSunLight Features
	8.10.2 Adding A New fxSunLight
	8.10.3 Changing The Sun Images
	8.10.4 Positioning The Sun (Render Position)
	8.10.5 Changing Lens Flare Effects
	8.10.6 Animating The Sun And Lens Flare
	8.10.7 Maze Runner Lesson #13

	8.11 Physical Zones (P-zones)
	8.11.1 velocityMod
	8.11.2 gravityMod
	8.11.3 appliedForce

	8.12 fxLight
	8.12.1 fxLight New Features
	8.12.2 fxLight Sample

	8.13 Paths And Markers
	8.13.1 Path Object
	8.13.2 Marker Object

	8.14 Triggers
	8.14.1 Placing A Trigger
	8.14.2 Trigger Scripting
	8.14.3 Maze Runner Lesson #15

	8.15 Mission Objects Summary

	Ch9. Game Setup Scripting
	9.1 SimSet
	9.2 SimGroup
	9.3 ScriptObjects And ScriptGroups
	9.3.1 ScriptObject
	9.3.2 ScriptGroup

	9.4 Device Inputs And Action Maps
	9.4.1 Defining Action Maps
	9.4.2 Maze Runner Lesson #16

	9.5 File I/0
	9.5.1 Locating Files
	9.5.2 Wildcards
	9.5.3 Counting Files
	9.5.4 Calculating CRC
	9.5.5 Filename Expansion
	9.5.6 Filename Subelements
	9.5.7 Before Reading Or Writing
	9.5.8 Reading Files
	9.5.9 Writing Files
	9.5.10 Maze Runner Lesson #17

	9.6 Compiling And Executing Files
	9.6.1 Compiling
	9.6.2 Executing

	9.7 Game Setup Scripting Summary

	Ch10. Gameplay Scripting
	10.1 Callbacks
	10.1.1 onAdd() And onRemove()
	10.1.2 onCollision()
	10.1.3 on Wake() And onSleep()
	10.1.4 create()
	10.1.5 onEnterTrigger() And onLeaveTrigger()

	10.2 Event Scheduling
	10.2.1 Motivation And Concepts
	10.2.2 Scheduling Our Own Events
	10.2.3 Checking For And Cancelling Pending Events
	10.2.4 Evenet Scheduling And Accuracy

	10.3 Manipulating Strings
	10.3.1 Words
	10.3.2 Tokens
	10.3.3 Records
	1o.3.4 Fields
	10.3.5 Conversion
	10.3.6 Metrics
	10.3.7 Searching And Replacing
	10.3.8 Comparisons
	10.3.9 Trimming And Stripping

	10.4 Scripted Math
	10.4.1 Floating-Point Arithmetic
	10.4.2 Trigonometric Functions
	10.4.3 Vectors
	10.4.4 Matrices
	10.4.5 Quadratics And Cubics
	10.4.6 Miscellaneous
	10.4.7 Maze Runner Lesson #18

	10.5 Dynamic Scripting
	10.5.1 Square Brackets[]
	10.5.2 Precedence Operators||
	10.5.3 eval()
	10.5.4 call()

	10.6 Basic Client-Server Communications
	10.6.1 Client->Server Commands
	10.6.2 Server->Client Commands
	10.6.3 The Takeaway
	10.6.4 Waving Sample Solution

	10.7 Summary

	Ch11. Special Effects
	11.1 Debris
	11.1.1 Debris And DebrisData Features
	11.1.2 Rendering
	11.1.3 Physical Properties
	11.1.4 Additional Behaviors
	11.1.5 Using Debris

	11.2 Decals
	11.2.1 DecalManager And DecalData Features
	11.2.2 Decal Properties
	11.2.3 Using Decals

	11.3 Explosions
	11.3.1 Building Up An Explosion
	11.3.2 Particles
	11.3.3 Explosion Shape
	11.3.4 Debris
	11.3.5 Lighting Effects
	11.3.6 Camera Shake
	11.3.7 Sound
	11.3.8 Subexplosions
	11.3.9 Thinking About Damage
	11.3.10 Using Explosions
	11.3.11 Maze Runner Lesson #19

	11.4 Projectiles
	11.4.1 Designing A Projectile
	11.4.2 Using Projectiles
	11.4.3 Maze Runner Lesson #20

	11.5 Sounds
	11.5.1 Sound Dimension
	11.5.2 AudioDescription And AudioProfile
	11.5.3 Sound Channels
	11.5.4 Using Sound
	11.5.5 new versus datablock for Profiles/Descriptions
	11.5.6 Maze Runner Lesson #21

	11.6 Special Effects Summary

	Ch12. Standard Torque Game Engine GUI Controls
	12.1 Standard GUIs
	12.1.1 Interfaces Versus GUIs
	12.1.2 The Canvas
	12.1.3 The Structure Of a .gui File

	12.2 GUI Profiles
	12.2.1 Visual Attributes Of GUI Control Profiles

	12.3 GuiControl-The Root GUI Class
	12.3.1 Profiles
	12.3.2 Extents And Position
	12.3.3 Position And Sizing
	12.3.4 Initial Visibility
	12.3.5 Accelerators
	12.3.6 Commands And $thisControl
	12.3.7 Variables
	12.3.8 Becoming First Responder
	12.3.9 Current And Subsequent Visibility
	12.3.10 Awake And Active?

	12.4 GUI Console Methods, Callbacks, And Scoping
	12.4.1 Console Methods For GuiControl And Children
	12.4.2 Console Methods For GuiControlProfile And Children

	12.5 GUI Skinning
	12.5.1 Bitmap Arrays
	12.5.2 Enabling Skinning

	12.6 Container Controls
	12.6.1 GuiFrameSetCtrl
	12.6.2 GuiScrollCtrl
	12.6.3 GuiStackControl
	12.6.4 GuiPanelControl
	12.6.5 GuiTabBookCtrl And GuiTabPageCtrl
	12.6.6 GuiWindowCtrl

	12.7 Backgrounds And Boarders
	12.7.1 GuiBitmapCtrl
	12.7.2 GuiChunkedBitmapCtrl
	12.7.3 GuiBitmapBorderCtrl
	12.7.4 BuiFadeInBitmapCtrl

	12.8 Text Controls
	12.8.1 GuiMessageVectorCtrl
	12.8.2 GuiMLTextCtrl
	12.8.3 GuiMLTextEditCtrl
	12.8.4 GuiTextCtrl
	12.8.5 GuiTextEditCtrl
	12.8.6 GuitextListCtrl

	12.9 Buttons
	12.9.1 GuiButtonBaseCtrl
	12.9.2 GuiBitmapButtonCtrl
	12.9.3 GuiButtonCtrl
	12.9.4 GuiCheckBoxCtrl
	12.9.5 GuiRadioCtrl

	12.10 Menus
	12.10.1 GuiMenubar
	12.10.2 GuiPopupMenuCtrl

	12.11 Sliders And Scales
	12.11.1 GuiFilterCtrl
	12.11.2 GuiSliderCtrl
	12.11.3 GuiTextEditSliderCtrl

	12.12 Miscellaneous Controls
	12.12.1 GuiCursor
	12.12.2 GuiDirectoryTreeCtrl And GuiDirectoryFileListCtrl
	12.12.3 GuiInputCtrl
	12.12.4 GuiMouseEventCtrl
	12.12.5 GuiTreeViewCtrl

	12.13 Summary

	Ch13. Game Interfaces
	13.1 Game Interfaces
	13.1.1 Before We Start

	13.2 Toon-Themed Interfaces
	13.2.1 Splash(Toon)
	13.2.2 Main Menu(Toon)
	13.2.3 Credits(Toon)

	13.3 Tech-Themed Interfaces
	13.4 Common HUDs
	13.4.1 Counter HUDs
	13.4.2 Vertical Feedback Bar HUDs
	13.4.3 Strip Compass HUD

	13.5 Summary

	Part IV-Making The Game
	Ch14. Putting it All Together
	14.1 Maze Runner: A Simple Single-Player Game
	14.2 Game Elements
	14.2.1 Maze Runner: Game Elements

	14.3 Game Goals, Rules, And Mechanics
	14.4 Setting Up Our Workspace
	14.4.1 Starting From Torque Demo
	14.4.2 Write Cleanup Scripts
	14.4.3 Copy Mod Directory
	14.4.4 Modify "main.cs"
	14.4.5 Add Systems Scripts
	14.4.6 Add Maze Runner Data
	14.4.7 Create Maze Runner Scripts Directory
	14.4.8 Test Run
	14.4.9 Ready To Start

	14.5 90 Percent Or 10 Percent?
	14.6 Returning To Chapter 2?
	14.7 Finishing The Prototype
	14.8 Finish Gameplay Code
	14.8.1 Copy Required Files
	14.8.2 Breaking The Law
	14.8.3 Automatic Startup
	14.8.4 Dying
	14.8.5 Moving On
	14.8.6 Gameplay Scripting Completed

	14.9 Improve Feedback
	14.9.1 Copy Required Files
	14.9.2 New playGUI HUDs
	14.9.3 Adding Sounds

	14.10 Improving The Game
	14.10.1 Add More Features
	14.10.2 use Missions Instead
	14.10.3 Fix Safe Block
	14.10.4 Cleanup
	14.10.5 Maximize Networking Performance
	14.10.6 Experiment WIth Art ANd Special Effects
	14.10.7 Features Added To Maze Runner Advanced

	14.11 Summary

	Index
	Back Cover

